import { OpenAIEmbeddings } from "@langchain/openai";
import { HNSWLib } from "@langchain/community/vectorstores/hnswlib";
import { Document } from "@langchain/core/documents";
import type { AttributeInfo } from "langchain/chains/query_constructor";
/**
* First, we create a bunch of documents. You can load your own documents here instead.
* Each document has a pageContent and a metadata field. Make sure your metadata matches the AttributeInfo below.
*/
const docs = [
new Document({
pageContent:
"A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata: { year: 1993, rating: 7.7, genre: "science fiction" },
}),
new Document({
pageContent:
"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata: { year: 2010, director: "Christopher Nolan", rating: 8.2 },
}),
new Document({
pageContent:
"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata: { year: 2006, director: "Satoshi Kon", rating: 8.6 },
}),
new Document({
pageContent:
"A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata: { year: 2019, director: "Greta Gerwig", rating: 8.3 },
}),
new Document({
pageContent: "Toys come alive and have a blast doing so",
metadata: { year: 1995, genre: "animated" },
}),
new Document({
pageContent: "Three men walk into the Zone, three men walk out of the Zone",
metadata: {
year: 1979,
director: "Andrei Tarkovsky",
genre: "science fiction",
rating: 9.9,
},
}),
];
/**
* Next, we define the attributes we want to be able to query on.
* in this case, we want to be able to query on the genre, year, director, rating, and length of the movie.
* We also provide a description of each attribute and the type of the attribute.
* This is used to generate the query prompts.
*/
const attributeInfo: AttributeInfo[] = [
{
name: "genre",
description: "The genre of the movie",
type: "string or array of strings",
},
{
name: "year",
description: "The year the movie was released",
type: "number",
},
{
name: "director",
description: "The director of the movie",
type: "string",
},
{
name: "rating",
description: "The rating of the movie (1-10)",
type: "number",
},
{
name: "length",
description: "The length of the movie in minutes",
type: "number",
},
];
/**
* Next, we instantiate a vector store. This is where we store the embeddings of the documents.
* We also need to provide an embeddings object. This is used to embed the documents.
*/
const embeddings = new OpenAIEmbeddings();
const vectorStore = await HNSWLib.fromDocuments(docs, embeddings);