Skip to main content
This page covers how to use the DeepSparse inference runtime within LangChain. It is broken into two parts: installation and setup, and then examples of DeepSparse usage.

Installation and setup

There exists a DeepSparse LLM wrapper, that provides a unified interface for all models:
from langchain_community.llms import DeepSparse

llm = DeepSparse(
    model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none"
)

print(llm.invoke("def fib():"))
Additional parameters can be passed using the config parameter:
config = {"max_generated_tokens": 256}

llm = DeepSparse(
    model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none",
    config=config,
)

Connect these docs to Claude, VSCode, and more via MCP for real-time answers.