embaas is a fully managed NLP API service that offers features like embedding generation, document text extraction, document to embeddings and more. You can choose a variety of pre-trained models.In this tutorial, we will show you how to use the embaas Embeddings API to generate embeddings for a given text.
import os# Set API keyembaas_api_key = "YOUR_API_KEY"# or set environment variableos.environ["EMBAAS_API_KEY"] = "YOUR_API_KEY"
Copy
Ask AI
from langchain_community.embeddings import EmbaasEmbeddings
Copy
Ask AI
embeddings = EmbaasEmbeddings()
Copy
Ask AI
# Create embeddings for a single documentdoc_text = "This is a test document."doc_text_embedding = embeddings.embed_query(doc_text)
Copy
Ask AI
# Print created embeddingprint(doc_text_embedding)
Copy
Ask AI
# Create embeddings for multiple documentsdoc_texts = ["This is a test document.", "This is another test document."]doc_texts_embeddings = embeddings.embed_documents(doc_texts)
Copy
Ask AI
# Print created embeddingsfor i, doc_text_embedding in enumerate(doc_texts_embeddings): print(f"Embedding for document {i + 1}: {doc_text_embedding}")
Copy
Ask AI
# Using a different model and/or custom instructionembeddings = EmbaasEmbeddings( model="instructor-large", instruction="Represent the Wikipedia document for retrieval",)