Our new LangChain Academy Course Deep Research with LangGraph is now live! Enroll for free.
OSS (v1-alpha)
LangChain and LangGraph
MosaicML offers a managed inference service. You can either use a variety of open-source models, or deploy your own.
MosaicML
# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain from getpass import getpass MOSAICML_API_TOKEN = getpass()
import os os.environ["MOSAICML_API_TOKEN"] = MOSAICML_API_TOKEN
from langchain_community.embeddings import MosaicMLInstructorEmbeddings
embeddings = MosaicMLInstructorEmbeddings( query_instruction="Represent the query for retrieval: " )
query_text = "This is a test query." query_result = embeddings.embed_query(query_text)
document_text = "This is a test document." document_result = embeddings.embed_documents([document_text])
import numpy as np query_numpy = np.array(query_result) document_numpy = np.array(document_result[0]) similarity = np.dot(query_numpy, document_numpy) / ( np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy) ) print(f"Cosine similarity between document and query: {similarity}")