This will help you get started with the SQL Database toolkit. For detailed documentation of all SQLDatabaseToolkit features and configurations head to the API reference. Tools within the SQLDatabaseToolkit are designed to interact with a SQL database. A common application is to enable agents to answer questions using data in a relational database, potentially in an iterative fashion (e.g., recovering from errors). ⚠️ Security note ⚠️ Building Q&A systems of SQL databases requires executing model-generated SQL queries. There are inherent risks in doing this. Make sure that your database connection permissions are always scoped as narrowly as possible for your chain/agent’s needs. This will mitigate though not eliminate the risks of building a model-driven system. For more on general security best practices, see here.

Setup

To enable automated tracing of individual tools, set your LangSmith API key:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Installation

This toolkit lives in the langchain-community package:
%pip install --upgrade --quiet  langchain-community
For demonstration purposes, we will access a prompt in the LangChain Hub. We will also require langgraph to demonstrate the use of the toolkit with an agent. This is not required to use the toolkit.
%pip install --upgrade --quiet langchainhub langgraph

Instantiation

The SQLDatabaseToolkit toolkit requires: Below, we instantiate the toolkit with these objects. Let’s first create a database object. This guide uses the example Chinook database based on these instructions. Below we will use the requests library to pull the .sql file and create an in-memory SQLite database. Note that this approach is lightweight, but ephemeral and not thread-safe. If you’d prefer, you can follow the instructions to save the file locally as Chinook.db and instantiate the database via db = SQLDatabase.from_uri("sqlite:///Chinook.db").
import sqlite3

import requests
from langchain_community.utilities.sql_database import SQLDatabase
from sqlalchemy import create_engine
from sqlalchemy.pool import StaticPool


def get_engine_for_chinook_db():
    """Pull sql file, populate in-memory database, and create engine."""
    url = "https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql"
    response = requests.get(url)
    sql_script = response.text

    connection = sqlite3.connect(":memory:", check_same_thread=False)
    connection.executescript(sql_script)
    return create_engine(
        "sqlite://",
        creator=lambda: connection,
        poolclass=StaticPool,
        connect_args={"check_same_thread": False},
    )


engine = get_engine_for_chinook_db()

db = SQLDatabase(engine)
We will also need a LLM or chat model:
# | output: false
# | echo: false

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0)
We can now instantiate the toolkit:
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit

toolkit = SQLDatabaseToolkit(db=db, llm=llm)

Tools

View available tools:
toolkit.get_tools()
[QuerySQLDatabaseTool(description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.", db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x103d5fa60>),
 InfoSQLDatabaseTool(description='Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x103d5fa60>),
 ListSQLDatabaseTool(db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x103d5fa60>),
 QuerySQLCheckerTool(description='Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x103d5fa60>, llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x10742d720>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x10742f7f0>, root_client=<openai.OpenAI object at 0x103d5fac0>, root_async_client=<openai.AsyncOpenAI object at 0x10742d780>, temperature=0.0, model_kwargs={}, openai_api_key=SecretStr('**********')), llm_chain=LLMChain(verbose=False, prompt=PromptTemplate(input_variables=['dialect', 'query'], input_types={}, partial_variables={}, template='\n{query}\nDouble check the {dialect} query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n\nOutput the final SQL query only.\n\nSQL Query: '), llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x10742d720>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x10742f7f0>, root_client=<openai.OpenAI object at 0x103d5fac0>, root_async_client=<openai.AsyncOpenAI object at 0x10742d780>, temperature=0.0, model_kwargs={}, openai_api_key=SecretStr('**********')), output_parser=StrOutputParser(), llm_kwargs={}))]
You can use the individual tools directly:
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDatabaseTool,
)

Use within an agent

Following the SQL Q&A Tutorial, below we equip a simple question-answering agent with the tools in our toolkit. First we pull a relevant prompt and populate it with its required parameters:
from langchain import hub

prompt_template = hub.pull("langchain-ai/sql-agent-system-prompt")

assert len(prompt_template.messages) == 1
print(prompt_template.input_variables)
['dialect', 'top_k']
system_message = prompt_template.format(dialect="SQLite", top_k=5)
We then instantiate the agent:
from langgraph.prebuilt import create_react_agent

agent_executor = create_react_agent(llm, toolkit.get_tools(), prompt=system_message)
And issue it a query:
example_query = "Which country's customers spent the most?"

events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Which country's customers spent the most?
================================== Ai Message ==================================
Tool Calls:
  sql_db_list_tables (call_EBPjyfzqXzFutDn8BklYACLj)
 Call ID: call_EBPjyfzqXzFutDn8BklYACLj
  Args:
================================= Tool Message =================================
Name: sql_db_list_tables

Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
================================== Ai Message ==================================
Tool Calls:
  sql_db_schema (call_kGcnKpxRVFIY8dPjYIJbRoVU)
 Call ID: call_kGcnKpxRVFIY8dPjYIJbRoVU
  Args:
    table_names: Customer, Invoice, InvoiceLine
================================= Tool Message =================================
Name: sql_db_schema


CREATE TABLE "Customer" (
	"CustomerId" INTEGER NOT NULL, 
	"FirstName" NVARCHAR(40) NOT NULL, 
	"LastName" NVARCHAR(20) NOT NULL, 
	"Company" NVARCHAR(80), 
	"Address" NVARCHAR(70), 
	"City" NVARCHAR(40), 
	"State" NVARCHAR(40), 
	"Country" NVARCHAR(40), 
	"PostalCode" NVARCHAR(10), 
	"Phone" NVARCHAR(24), 
	"Fax" NVARCHAR(24), 
	"Email" NVARCHAR(60) NOT NULL, 
	"SupportRepId" INTEGER, 
	PRIMARY KEY ("CustomerId"), 
	FOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId")
)

/*
3 rows from Customer table:
CustomerId	FirstName	LastName	Company	Address	City	State	Country	PostalCode	Phone	Fax	Email	SupportRepId
1	Luís	Gonçalves	Embraer - Empresa Brasileira de Aeronáutica S.A.	Av. Brigadeiro Faria Lima, 2170	São José dos Campos	SP	Brazil	12227-000	+55 (12) 3923-5555	+55 (12) 3923-5566	luisg@embraer.com.br	3
2	Leonie	Köhler	None	Theodor-Heuss-Straße 34	Stuttgart	None	Germany	70174	+49 0711 2842222	None	leonekohler@surfeu.de	5
3	François	Tremblay	None	1498 rue Bélanger	Montréal	QC	Canada	H2G 1A7	+1 (514) 721-4711	None	ftremblay@gmail.com	3
*/


CREATE TABLE "Invoice" (
	"InvoiceId" INTEGER NOT NULL, 
	"CustomerId" INTEGER NOT NULL, 
	"InvoiceDate" DATETIME NOT NULL, 
	"BillingAddress" NVARCHAR(70), 
	"BillingCity" NVARCHAR(40), 
	"BillingState" NVARCHAR(40), 
	"BillingCountry" NVARCHAR(40), 
	"BillingPostalCode" NVARCHAR(10), 
	"Total" NUMERIC(10, 2) NOT NULL, 
	PRIMARY KEY ("InvoiceId"), 
	FOREIGN KEY("CustomerId") REFERENCES "Customer" ("CustomerId")
)

/*
3 rows from Invoice table:
InvoiceId	CustomerId	InvoiceDate	BillingAddress	BillingCity	BillingState	BillingCountry	BillingPostalCode	Total
1	2	2021-01-01 00:00:00	Theodor-Heuss-Straße 34	Stuttgart	None	Germany	70174	1.98
2	4	2021-01-02 00:00:00	Ullevålsveien 14	Oslo	None	Norway	0171	3.96
3	8	2021-01-03 00:00:00	Grétrystraat 63	Brussels	None	Belgium	1000	5.94
*/


CREATE TABLE "InvoiceLine" (
	"InvoiceLineId" INTEGER NOT NULL, 
	"InvoiceId" INTEGER NOT NULL, 
	"TrackId" INTEGER NOT NULL, 
	"UnitPrice" NUMERIC(10, 2) NOT NULL, 
	"Quantity" INTEGER NOT NULL, 
	PRIMARY KEY ("InvoiceLineId"), 
	FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), 
	FOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId")
)

/*
3 rows from InvoiceLine table:
InvoiceLineId	InvoiceId	TrackId	UnitPrice	Quantity
1	1	2	0.99	1
2	1	4	0.99	1
3	2	6	0.99	1
*/
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_cTfI7OrY64FzJaDd49ILFWw7)
 Call ID: call_cTfI7OrY64FzJaDd49ILFWw7
  Args:
    query: SELECT c.Country, SUM(i.Total) AS TotalSpent FROM Customer c JOIN Invoice i ON c.CustomerId = i.CustomerId GROUP BY c.Country ORDER BY TotalSpent DESC LIMIT 1
================================= Tool Message =================================
Name: sql_db_query

[('USA', 523.06)]
================================== Ai Message ==================================

Customers from the USA spent the most, with a total amount spent of $523.06.
We can also observe the agent recover from an error:
example_query = "Who are the top 3 best selling artists?"

events = agent_executor.stream(
    {"messages": [("user", example_query)]},
    stream_mode="values",
)
for event in events:
    event["messages"][-1].pretty_print()
================================ Human Message =================================

Who are the top 3 best selling artists?
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_xAkvYiRFM7nCMKXsDNvk1OMx)
 Call ID: call_xAkvYiRFM7nCMKXsDNvk1OMx
  Args:
    query: SELECT artist_name, SUM(quantity) AS total_sold FROM sales GROUP BY artist_name ORDER BY total_sold DESC LIMIT 3
================================= Tool Message =================================
Name: sql_db_query

Error: (sqlite3.OperationalError) no such table: sales
[SQL: SELECT artist_name, SUM(quantity) AS total_sold FROM sales GROUP BY artist_name ORDER BY total_sold DESC LIMIT 3]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
================================== Ai Message ==================================
Tool Calls:
  sql_db_list_tables (call_K4Zvbowsq7XPgGFepbvc5G7i)
 Call ID: call_K4Zvbowsq7XPgGFepbvc5G7i
  Args:
================================= Tool Message =================================
Name: sql_db_list_tables

Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
================================== Ai Message ==================================
Tool Calls:
  sql_db_schema (call_tUztueSK7VO2klZ99xT4ZVhM)
 Call ID: call_tUztueSK7VO2klZ99xT4ZVhM
  Args:
    table_names: Artist, Album, InvoiceLine
================================= Tool Message =================================
Name: sql_db_schema


CREATE TABLE "Album" (
	"AlbumId" INTEGER NOT NULL, 
	"Title" NVARCHAR(160) NOT NULL, 
	"ArtistId" INTEGER NOT NULL, 
	PRIMARY KEY ("AlbumId"), 
	FOREIGN KEY("ArtistId") REFERENCES "Artist" ("ArtistId")
)

/*
3 rows from Album table:
AlbumId	Title	ArtistId
1	For Those About To Rock We Salute You	1
2	Balls to the Wall	2
3	Restless and Wild	2
*/


CREATE TABLE "Artist" (
	"ArtistId" INTEGER NOT NULL, 
	"Name" NVARCHAR(120), 
	PRIMARY KEY ("ArtistId")
)

/*
3 rows from Artist table:
ArtistId	Name
1	AC/DC
2	Accept
3	Aerosmith
*/


CREATE TABLE "InvoiceLine" (
	"InvoiceLineId" INTEGER NOT NULL, 
	"InvoiceId" INTEGER NOT NULL, 
	"TrackId" INTEGER NOT NULL, 
	"UnitPrice" NUMERIC(10, 2) NOT NULL, 
	"Quantity" INTEGER NOT NULL, 
	PRIMARY KEY ("InvoiceLineId"), 
	FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), 
	FOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId")
)

/*
3 rows from InvoiceLine table:
InvoiceLineId	InvoiceId	TrackId	UnitPrice	Quantity
1	1	2	0.99	1
2	1	4	0.99	1
3	2	6	0.99	1
*/
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_tVtLQIRPmCM6pukgpHFfq86A)
 Call ID: call_tVtLQIRPmCM6pukgpHFfq86A
  Args:
    query: SELECT Artist.Name AS artist_name, SUM(InvoiceLine.Quantity) AS total_sold FROM Artist JOIN Album ON Artist.ArtistId = Album.ArtistId JOIN Track ON Album.AlbumId = Track.AlbumId JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY total_sold DESC LIMIT 3
================================= Tool Message =================================
Name: sql_db_query

[('Iron Maiden', 140), ('U2', 107), ('Metallica', 91)]
================================== Ai Message ==================================

The top 3 best selling artists are:
1. Iron Maiden - 140 units sold
2. U2 - 107 units sold
3. Metallica - 91 units sold

Specific functionality

SQLDatabaseToolkit implements a .get_context method as a convenience for use in prompts or other contexts. ⚠️ Disclaimer ⚠️ : The agent may generate insert/update/delete queries. When this is not expected, use a custom prompt or create a SQL users without write permissions. The final user might overload your SQL database by asking a simple question such as “run the biggest query possible”. The generated query might look like:
SELECT * FROM "public"."users"
    JOIN "public"."user_permissions" ON "public"."users".id = "public"."user_permissions".user_id
    JOIN "public"."projects" ON "public"."users".id = "public"."projects".user_id
    JOIN "public"."events" ON "public"."projects".id = "public"."events".project_id;
For a transactional SQL database, if one of the table above contains millions of rows, the query might cause trouble to other applications using the same database. Most datawarehouse oriented databases support user-level quota, for limiting resource usage.

API reference

For detailed documentation of all SQLDatabaseToolkit features and configurations head to the API reference.