This guide reviews common workflow and agent patterns.
  • Workflows have predetermined code paths and are designed to operate in a certain order.
  • Agents are dynamic and define their own processes and tool usage.
Agent Workflow LangGraph offers several benefits when building agents and workflows, including persistence, streaming, and support for debugging as well as deployment.

Setup

To build a workflow or agent, you can use any chat model that supports structured outputs and tool calling. The following example uses Anthropic:
  1. Install dependencies
npm install @langchain/langgraph@next @langchain/core@next
  1. Initialize the LLM:
import { ChatAnthropic } from "@langchain/anthropic";

const llm = new ChatAnthropic({
  model: "claude-3-5-sonnet-latest",
  apiKey: "<your_anthropic_key>"
});

LLMs and augmentations

Workflows and agentic systems are based on LLMs and the various augmentations you add to them. Tool calling, structured outputs, and short term memory are a few options for tailoring LLMs to your needs. LLM augmentations

import { z } from "zod";
import { tool } from "langchain";

// Schema for structured output
const SearchQuery = z.object({
  search_query: z.string().describe("Query that is optimized web search."),
  justification: z
    .string()
    .describe("Why this query is relevant to the user's request."),
});

// Augment the LLM with schema for structured output
const structuredLlm = llm.withStructuredOutput(SearchQuery);

// Invoke the augmented LLM
const output = await structuredLlm.invoke(
  "How does Calcium CT score relate to high cholesterol?"
);

// Define a tool
const multiply = tool(
  ({ a, b }) => {
    return a * b;
  },
  {
    name: "multiply",
    description: "Multiply two numbers",
    schema: z.object({
      a: z.number(),
      b: z.number(),
    }),
  }
);

// Augment the LLM with tools
const llmWithTools = llm.bindTools([multiply]);

// Invoke the LLM with input that triggers the tool call
const msg = await llmWithTools.invoke("What is 2 times 3?");

// Get the tool call
console.log(msg.tool_calls);

Prompt chaining

Prompt chaining is when each LLM call processes the output of the previous call. It’s often used for performing well-defined tasks that can be broken down into smaller, verifiable steps. Some examples include:
  • Translating documents into different languages
  • Verifying generated content for consistency
Prompt chaining
import { StateGraph, Annotation } from "@langchain/langgraph";

// Graph state
const StateAnnotation = Annotation.Root({
  topic: Annotation<string>,
  joke: Annotation<string>,
  improvedJoke: Annotation<string>,
  finalJoke: Annotation<string>,
});

// Define node functions

// First LLM call to generate initial joke
async function generateJoke(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(`Write a short joke about ${state.topic}`);
  return { joke: msg.content };
}

// Gate function to check if the joke has a punchline
function checkPunchline(state: typeof StateAnnotation.State) {
  // Simple check - does the joke contain "?" or "!"
  if (state.joke?.includes("?") || state.joke?.includes("!")) {
    return "Pass";
  }
  return "Fail";
}

  // Second LLM call to improve the joke
async function improveJoke(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(
    `Make this joke funnier by adding wordplay: ${state.joke}`
  );
  return { improvedJoke: msg.content };
}

// Third LLM call for final polish
async function polishJoke(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(
    `Add a surprising twist to this joke: ${state.improvedJoke}`
  );
  return { finalJoke: msg.content };
}

// Build workflow
const chain = new StateGraph(StateAnnotation)
  .addNode("generateJoke", generateJoke)
  .addNode("improveJoke", improveJoke)
  .addNode("polishJoke", polishJoke)
  .addEdge("__start__", "generateJoke")
  .addConditionalEdges("generateJoke", checkPunchline, {
    Pass: "improveJoke",
    Fail: "__end__"
  })
  .addEdge("improveJoke", "polishJoke")
  .addEdge("polishJoke", "__end__")
  .compile();

// Invoke
const state = await chain.invoke({ topic: "cats" });
console.log("Initial joke:");
console.log(state.joke);
console.log("\n--- --- ---\n");
if (state.improvedJoke !== undefined) {
  console.log("Improved joke:");
  console.log(state.improvedJoke);
  console.log("\n--- --- ---\n");

  console.log("Final joke:");
  console.log(state.finalJoke);
} else {
  console.log("Joke failed quality gate - no punchline detected!");
}

Parallelization

With parallelization, LLMs work simultaneously on a task. This is either done by running multiple independent subtasks at the same time, or running the same task multiple times to check for different outputs. Parallelization is commonly used to:
  • Split up subtasks and run them in parallel, which increases speed
  • Run tasks multiple times to check for different outputs, which increases confidence
Some examples include:
  • Running one subtask that processes a document for keywords, and a second subtask to check for formatting errors
  • Running a task multiple times that scores a document for accuracy based on different criteria, like the number of citations, the number of sources used, and the quality of the sources
parallelization.png
import { StateGraph, Annotation } from "@langchain/langgraph";

// Graph state
const StateAnnotation = Annotation.Root({
  topic: Annotation<string>,
  joke: Annotation<string>,
  story: Annotation<string>,
  poem: Annotation<string>,
  combinedOutput: Annotation<string>,
});

// Nodes
// First LLM call to generate initial joke
async function callLlm1(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(`Write a joke about ${state.topic}`);
  return { joke: msg.content };
}

// Second LLM call to generate story
async function callLlm2(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(`Write a story about ${state.topic}`);
  return { story: msg.content };
}

// Third LLM call to generate poem
async function callLlm3(state: typeof StateAnnotation.State) {
  const msg = await llm.invoke(`Write a poem about ${state.topic}`);
  return { poem: msg.content };
}

// Combine the joke, story and poem into a single output
async function aggregator(state: typeof StateAnnotation.State) {
  const combined = `Here's a story, joke, and poem about ${state.topic}!\n\n` +
    `STORY:\n${state.story}\n\n` +
    `JOKE:\n${state.joke}\n\n` +
    `POEM:\n${state.poem}`;
  return { combinedOutput: combined };
}

// Build workflow
const parallelWorkflow = new StateGraph(StateAnnotation)
  .addNode("callLlm1", callLlm1)
  .addNode("callLlm2", callLlm2)
  .addNode("callLlm3", callLlm3)
  .addNode("aggregator", aggregator)
  .addEdge("__start__", "callLlm1")
  .addEdge("__start__", "callLlm2")
  .addEdge("__start__", "callLlm3")
  .addEdge("callLlm1", "aggregator")
  .addEdge("callLlm2", "aggregator")
  .addEdge("callLlm3", "aggregator")
  .addEdge("aggregator", "__end__")
  .compile();

// Invoke
const result = await parallelWorkflow.invoke({ topic: "cats" });
console.log(result.combinedOutput);

Routing

Routing workflows process inputs and then directs them to context-specific tasks. This allows you to define specialized flows for complex tasks. For example, a workflow built to answer product related questions might process the type of question first, and then route the request to specific processes for pricing, refunds, returns, etc. routing.png
import { StateGraph, Annotation } from "@langchain/langgraph";
import { z } from "zod";

// Schema for structured output to use as routing logic
const routeSchema = z.object({
  step: z.enum(["poem", "story", "joke"]).describe(
    "The next step in the routing process"
  ),
});

// Augment the LLM with schema for structured output
const router = llm.withStructuredOutput(routeSchema);

// Graph state
const StateAnnotation = Annotation.Root({
  input: Annotation<string>,
  decision: Annotation<string>,
  output: Annotation<string>,
});

// Nodes
// Write a story
async function llmCall1(state: typeof StateAnnotation.State) {
  const result = await llm.invoke([{
    role: "system",
    content: "You are an expert storyteller.",
  }, {
    role: "user",
    content: state.input
  }]);
  return { output: result.content };
}

// Write a joke
async function llmCall2(state: typeof StateAnnotation.State) {
  const result = await llm.invoke([{
    role: "system",
    content: "You are an expert comedian.",
  }, {
    role: "user",
    content: state.input
  }]);
  return { output: result.content };
}

// Write a poem
async function llmCall3(state: typeof StateAnnotation.State) {
  const result = await llm.invoke([{
    role: "system",
    content: "You are an expert poet.",
  }, {
    role: "user",
    content: state.input
  }]);
  return { output: result.content };
}

async function llmCallRouter(state: typeof StateAnnotation.State) {
  // Route the input to the appropriate node
  const decision = await router.invoke([
    {
      role: "system",
      content: "Route the input to story, joke, or poem based on the user's request."
    },
    {
      role: "user",
      content: state.input
    },
  ]);

  return { decision: decision.step };
}

// Conditional edge function to route to the appropriate node
function routeDecision(state: typeof StateAnnotation.State) {
  // Return the node name you want to visit next
  if (state.decision === "story") {
    return "llmCall1";
  } else if (state.decision === "joke") {
    return "llmCall2";
  } else if (state.decision === "poem") {
    return "llmCall3";
  }
}

// Build workflow
const routerWorkflow = new StateGraph(StateAnnotation)
  .addNode("llmCall1", llmCall1)
  .addNode("llmCall2", llmCall2)
  .addNode("llmCall3", llmCall3)
  .addNode("llmCallRouter", llmCallRouter)
  .addEdge("__start__", "llmCallRouter")
  .addConditionalEdges(
    "llmCallRouter",
    routeDecision,
    ["llmCall1", "llmCall2", "llmCall3"],
  )
  .addEdge("llmCall1", "__end__")
  .addEdge("llmCall2", "__end__")
  .addEdge("llmCall3", "__end__")
  .compile();

// Invoke
const state = await routerWorkflow.invoke({
  input: "Write me a joke about cats"
});
console.log(state.output);

Orchestrator-worker

In an orchestrator-worker configuration, the orchestrator:
  • Breaks down tasks into subtasks
  • Delegates subtasks to workers
  • Synthesizes worker outputs into a final result
worker.png Orchestrator-worker workflows provide more flexibility and are often used when subtasks cannot be predefined the way they can with parallelization. This is common with workflows that write code or need to update content across multiple files. For example, a workflow that needs to update installation instructions for multiple Python libraries across an unknown number of documents might use this pattern.

type SectionSchema = {
    name: string;
    description: string;
}
type SectionsSchema = {
    sections: SectionSchema[];
}

// Augment the LLM with schema for structured output
const planner = llm.withStructuredOutput(sectionsSchema);

Creating workers in LangGraph

Orchestrator-worker workflows are common and LangGraph has built-in support for them. The Send API lets you dynamically create worker nodes and send them specific inputs. Each worker has its own state, and all worker outputs are written to a shared state key that is accessible to the orchestrator graph. This gives the orchestrator access to all worker output and allows it to synthesize them into a final output. The example below iterates over a list of sections and uses the Send API to send a section to each worker.
import { Annotation, StateGraph, Send } from "@langchain/langgraph";

// Graph state
const StateAnnotation = Annotation.Root({
  topic: Annotation<string>,
  sections: Annotation<SectionsSchema[]>,
  completedSections: Annotation<string[]>({
    default: () => [],
    reducer: (a, b) => a.concat(b),
  }),
  finalReport: Annotation<string>,
});

// Worker state
const WorkerStateAnnotation = Annotation.Root({
  section: Annotation<SectionsSchema>,
  completedSections: Annotation<string[]>({
    default: () => [],
    reducer: (a, b) => a.concat(b),
  }),
});

// Nodes
async function orchestrator(state: typeof StateAnnotation.State) {
  // Generate queries
  const reportSections = await planner.invoke([
    { role: "system", content: "Generate a plan for the report." },
    { role: "user", content: `Here is the report topic: ${state.topic}` },
  ]);

  return { sections: reportSections.sections };
}

async function llmCall(state: typeof WorkerStateAnnotation.State) {
  // Generate section
  const section = await llm.invoke([
    {
      role: "system",
      content: "Write a report section following the provided name and description. Include no preamble for each section. Use markdown formatting.",
    },
    {
      role: "user",
      content: `Here is the section name: ${state.section.name} and description: ${state.section.description}`,
    },
  ]);

  // Write the updated section to completed sections
  return { completedSections: [section.content] };
}

async function synthesizer(state: typeof StateAnnotation.State) {
  // List of completed sections
  const completedSections = state.completedSections;

  // Format completed section to str to use as context for final sections
  const completedReportSections = completedSections.join("\n\n---\n\n");

  return { finalReport: completedReportSections };
}

// Conditional edge function to create llm_call workers that each write a section of the report
function assignWorkers(state: typeof StateAnnotation.State) {
  // Kick off section writing in parallel via Send() API
  return state.sections.map((section) =>
    new Send("llmCall", { section })
  );
}

// Build workflow
const orchestratorWorker = new StateGraph(StateAnnotation)
  .addNode("orchestrator", orchestrator)
  .addNode("llmCall", llmCall)
  .addNode("synthesizer", synthesizer)
  .addEdge("__start__", "orchestrator")
  .addConditionalEdges(
    "orchestrator",
    assignWorkers,
    ["llmCall"]
  )
  .addEdge("llmCall", "synthesizer")
  .addEdge("synthesizer", "__end__")
  .compile();

// Invoke
const state = await orchestratorWorker.invoke({
  topic: "Create a report on LLM scaling laws"
});
console.log(state.finalReport);

Evaluator-optimizer

In evaluator-optimizer workflows, one LLM call creates a response and the other evaluates that response. If the evaluator or a human-in-the-loop determines the response needs refinement, feedback is provided and the response is recreated. This loop continues until an acceptable response is generated. Evaluator-optimizer workflows are commonly used when there’s particular success criteria for a task, but iteration is required to meet that criteria. For example, there’s not always a perfect match when translating text between two languages. It might take a few iterations to generate a translation with the same meaning across the two languages. evaluator_optimizer.png
import { z } from "zod";
import { Annotation, StateGraph } from "@langchain/langgraph";

// Graph state
const StateAnnotation = Annotation.Root({
  joke: Annotation<string>,
  topic: Annotation<string>,
  feedback: Annotation<string>,
  funnyOrNot: Annotation<string>,
});

// Schema for structured output to use in evaluation
const feedbackSchema = z.object({
  grade: z.enum(["funny", "not funny"]).describe(
    "Decide if the joke is funny or not."
  ),
  feedback: z.string().describe(
    "If the joke is not funny, provide feedback on how to improve it."
  ),
});

// Augment the LLM with schema for structured output
const evaluator = llm.withStructuredOutput(feedbackSchema);

// Nodes
async function llmCallGenerator(state: typeof StateAnnotation.State) {
  // LLM generates a joke
  let msg;
  if (state.feedback) {
    msg = await llm.invoke(
      `Write a joke about ${state.topic} but take into account the feedback: ${state.feedback}`
    );
  } else {
    msg = await llm.invoke(`Write a joke about ${state.topic}`);
  }
  return { joke: msg.content };
}

async function llmCallEvaluator(state: typeof StateAnnotation.State) {
  // LLM evaluates the joke
  const grade = await evaluator.invoke(`Grade the joke ${state.joke}`);
  return { funnyOrNot: grade.grade, feedback: grade.feedback };
}

// Conditional edge function to route back to joke generator or end based upon feedback from the evaluator
function routeJoke(state: typeof StateAnnotation.State) {
  // Route back to joke generator or end based upon feedback from the evaluator
  if (state.funnyOrNot === "funny") {
    return "Accepted";
  } else if (state.funnyOrNot === "not funny") {
    return "Rejected + Feedback";
  }
}

// Build workflow
const optimizerWorkflow = new StateGraph(StateAnnotation)
  .addNode("llmCallGenerator", llmCallGenerator)
  .addNode("llmCallEvaluator", llmCallEvaluator)
  .addEdge("__start__", "llmCallGenerator")
  .addEdge("llmCallGenerator", "llmCallEvaluator")
  .addConditionalEdges(
    "llmCallEvaluator",
    routeJoke,
    {
      // Name returned by routeJoke : Name of next node to visit
      "Accepted": "__end__",
      "Rejected + Feedback": "llmCallGenerator",
    }
  )
  .compile();

// Invoke
const state = await optimizerWorkflow.invoke({ topic: "Cats" });
console.log(state.joke);

Agents

Agents are typically implemented as an LLM performing actions using tools. They operate in continuous feedback loops, and are used in situations where problems and solutions are unpredictable. Agents have more autonomy than workflows, and can make decisions about the tools they use and how to solve problems. You can still define the available toolset and guidelines for how agents behave. agent.png
To get started with agents, see the quickstart or read more about how they work in LangChain.
Using tools
import { tool } from "@langchain/core/tools";
import { z } from "zod";

// Define tools
const multiply = tool(
  ({ a, b }) => {
    return a * b;
  },
  {
    name: "multiply",
    description: "Multiply two numbers together",
    schema: z.object({
      a: z.number().describe("first number"),
      b: z.number().describe("second number"),
    }),
  }
);

const add = tool(
  ({ a, b }) => {
    return a + b;
  },
  {
    name: "add",
    description: "Add two numbers together",
    schema: z.object({
      a: z.number().describe("first number"),
      b: z.number().describe("second number"),
    }),
  }
);

const divide = tool(
  ({ a, b }) => {
    return a / b;
  },
  {
    name: "divide",
    description: "Divide two numbers",
    schema: z.object({
      a: z.number().describe("first number"),
      b: z.number().describe("second number"),
    }),
  }
);

// Augment the LLM with tools
const tools = [add, multiply, divide];
const toolsByName = Object.fromEntries(tools.map((tool) => [tool.name, tool]));
const llmWithTools = llm.bindTools(tools);
import { MessagesAnnotation, StateGraph } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
import {
  SystemMessage,
  ToolMessage
} from "@langchain/core/messages";

// Nodes
async function llmCall(state: typeof MessagesAnnotation.State) {
  // LLM decides whether to call a tool or not
  const result = await llmWithTools.invoke([
    {
      role: "system",
      content: "You are a helpful assistant tasked with performing arithmetic on a set of inputs."
    },
    ...state.messages
  ]);

  return {
    messages: [result]
  };
}

const toolNode = new ToolNode(tools);

// Conditional edge function to route to the tool node or end
function shouldContinue(state: typeof MessagesAnnotation.State) {
  const messages = state.messages;
  const lastMessage = messages.at(-1);

  // If the LLM makes a tool call, then perform an action
  if (lastMessage?.tool_calls?.length) {
    return "Action";
  }
  // Otherwise, we stop (reply to the user)
  return "__end__";
}

// Build workflow
const agentBuilder = new StateGraph(MessagesAnnotation)
  .addNode("llmCall", llmCall)
  .addNode("tools", toolNode)
  // Add edges to connect nodes
  .addEdge("__start__", "llmCall")
  .addConditionalEdges(
    "llmCall",
    shouldContinue,
    {
      // Name returned by shouldContinue : Name of next node to visit
      "Action": "tools",
      "__end__": "__end__",
    }
  )
  .addEdge("tools", "llmCall")
  .compile();

// Invoke
const messages = [{
  role: "user",
  content: "Add 3 and 4."
}];
const result = await agentBuilder.invoke({ messages });
console.log(result.messages);