This guide provides a quick overview for getting started with OpenAI chat models. For detailed documentation of all ChatOpenAI features and configurations head to the API reference. OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the OpenAI docs.
Azure OpenAINote that certain OpenAI models can also be accessed via the Microsoft Azure platform. To use the Azure OpenAI service use the AzureChatOpenAI integration.

Overview

Integration details

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatOpenAIlangchain-openaibetaPyPI - DownloadsPyPI - Version

Model features

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs

Setup

To access OpenAI models you’ll need to create an OpenAI account, get an API key, and install the langchain-openai integration package.

Credentials

Head to https://platform.openai.com to sign up to OpenAI and generate an API key. Once you’ve done this set the OPENAI_API_KEY environment variable:
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
    os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Installation

The LangChain OpenAI integration lives in the langchain-openai package:
%pip install -qU langchain-openai

Instantiation

Now we can instantiate our model object and generate chat completions:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="gpt-5-nano",
    # stream_usage=True,
    # temperature=None,
    # max_tokens=None,
    # timeout=None,
    # reasoning_effort="low",
    # max_retries=2,
    # api_key="...",  # if you prefer to pass api key in directly instaed of using env vars
    # base_url="...",
    # organization="...",
    # other params...
)
See API Reference for the full set of available parameters.

Invocation

messages = [
    (
        "system",
        "You are a helpful assistant that translates English to French. Translate the user sentence.",
    ),
    ("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 31, 'total_tokens': 36}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'stop', 'logprobs': None}, id='run-63219b22-03e3-4561-8cc4-78b7c7c3a3ca-0', usage_metadata={'input_tokens': 31, 'output_tokens': 5, 'total_tokens': 36})
print(ai_msg.text)
J'adore la programmation.

Chaining

We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant that translates {input_language} to {output_language}.",
        ),
        ("human", "{input}"),
    ]
)

chain = prompt | llm
chain.invoke(
    {
        "input_language": "English",
        "output_language": "German",
        "input": "I love programming.",
    }
)
AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'stop', 'logprobs': None}, id='run-350585e1-16ca-4dad-9460-3d9e7e49aaf1-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})

Streaming usage metadata

OpenAI’s Chat Completions API does not stream token usage statistics by default (see API reference here). To recover token counts when streaming with ChatOpenAI or AzureChatOpenAI, set stream_usage=True as an initialization parameter or on invocation:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4.1-mini", stream_usage=True)

Tool calling

OpenAI has a tool calling (we use “tool calling” and “function calling” interchangeably here) API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally.

ChatOpenAI.bind_tools()

With ChatOpenAI.bind_tools, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to an OpenAI tool schemas, which looks like:
{
    "name": "...",
    "description": "...",
    "parameters": {...}  # JSONSchema
}
and passed in every model invocation.
from pydantic import BaseModel, Field


class GetWeather(BaseModel):
    """Get the current weather in a given location"""

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")


llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke(
    "what is the weather like in San Francisco",
)
ai_msg
AIMessage(content='', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 68, 'total_tokens': 85}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-1617c9b2-dda5-4120-996b-0333ed5992e2-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'call_o9udf3EVOWiV4Iupktpbpofk', 'type': 'tool_call'}], usage_metadata={'input_tokens': 68, 'output_tokens': 17, 'total_tokens': 85})

strict=True

Requires langchain-openai>=0.1.21
As of Aug 6, 2024, OpenAI supports a strict argument when calling tools that will enforce that the tool argument schema is respected by the model. See more here: https://platform.openai.com/docs/guides/function-calling Note: If strict=True the tool definition will also be validated, and a subset of JSON schema are accepted. Crucially, schema cannot have optional args (those with default values). Read the full docs on what types of schema are supported here: https://platform.openai.com/docs/guides/structured-outputs/supported-schemas.
llm_with_tools = llm.bind_tools([GetWeather], strict=True)
ai_msg = llm_with_tools.invoke(
    "what is the weather like in San Francisco",
)
ai_msg
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_jUqhd8wzAIzInTJl72Rla8ht', 'function': {'arguments': '{"location":"San Francisco, CA"}', 'name': 'GetWeather'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 68, 'total_tokens': 85}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_3aa7262c27', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-5e3356a9-132d-4623-8e73-dd5a898cf4a6-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'call_jUqhd8wzAIzInTJl72Rla8ht', 'type': 'tool_call'}], usage_metadata={'input_tokens': 68, 'output_tokens': 17, 'total_tokens': 85})

AIMessage.tool_calls

Notice that the AIMessage has a tool_calls attribute. This contains in a standardized ToolCall format that is model-provider agnostic.
ai_msg.tool_calls
[{'name': 'GetWeather',
  'args': {'location': 'San Francisco, CA'},
  'id': 'call_jUqhd8wzAIzInTJl72Rla8ht',
  'type': 'tool_call'}]
For more on binding tools and tool call outputs, head to the tool calling docs.

Structured output and tool calls

OpenAI’s structured output feature can be used simultaneously with tool-calling. The model will either generate tool calls or a response adhering to a desired schema. See example below:
from langchain_openai import ChatOpenAI
from pydantic import BaseModel


def get_weather(location: str) -> None:
    """Get weather at a location."""
    return "It's sunny."


class OutputSchema(BaseModel):
    """Schema for response."""

    answer: str
    justification: str


llm = ChatOpenAI(model="gpt-4.1")

structured_llm = llm.bind_tools(
    [get_weather],
    response_format=OutputSchema,
    strict=True,
)

# Response contains tool calls:
tool_call_response = structured_llm.invoke("What is the weather in SF?")

# structured_response.additional_kwargs["parsed"] contains parsed output
structured_response = structured_llm.invoke(
    "What weighs more, a pound of feathers or a pound of gold?"
)

Custom tools

Requires langchain-openai>=0.3.29
Custom tools support tools with arbitrary string inputs. They can be particularly useful when you expect your string arguments to be long or complex.
from langchain_openai import ChatOpenAI, custom_tool
from langchain.agents import create_react_agent


@custom_tool
def execute_code(code: str) -> str:
    """Execute python code."""
    return "27"


llm = ChatOpenAI(model="gpt-5", use_responses_api=True, output_version="v1")

agent = create_react_agent(llm, [execute_code])

input_message = {"role": "user", "content": "Use the tool to calculate 3^3."}
for step in agent.stream(
    {"messages": [input_message]},
    stream_mode="values",
):
    step["messages"][-1].pretty_print()
================================ Human Message =================================

Use the tool to calculate 3^3.
================================== Ai Message ==================================

[{'id': 'rs_68af67a342f881a08980957bcf6d9ec208ee034b81b03765', 'type': 'reasoning'}, {'type': 'non_standard', 'value': {'call_id': 'call_lxgZev0vahouTtOd4YGQgIau', 'input': 'print(3**3)', 'name': 'execute_code', 'type': 'custom_tool_call', 'id': 'ctc_68af67a7648c81a0b8c7795439668b7e08ee034b81b03765', 'status': 'completed'}}]
Tool Calls:
  execute_code (call_lxgZev0vahouTtOd4YGQgIau)
 Call ID: call_lxgZev0vahouTtOd4YGQgIau
  Args:
    __arg1: print(3**3)
================================= Tool Message =================================
Name: execute_code

[{'type': 'custom_tool_call_output', 'output': '27'}]
================================== Ai Message ==================================

[{'type': 'text', 'text': '27', 'annotations': [], 'id': 'msg_68af67a82d8081a0a73c901b865e358e08ee034b81b03765'}]

Responses API

Requires langchain-openai>=0.3.9
OpenAI supports a Responses API that is oriented toward building agentic applications. It includes a suite of built-in tools, including web and file search. It also supports management of conversation state, allowing you to continue a conversational thread without explicitly passing in previous messages, as well as the output from reasoning processes. ChatOpenAI will route to the Responses API if one of these features is used. You can also specify use_responses_api=True when instantiating ChatOpenAI.
langchain-openai >= 0.3.26 allows users to opt-in to an updated AIMessage format when using the Responses API. Setting
llm = ChatOpenAI(model="...", output_version="responses/v1")
will format output from reasoning summaries, built-in tool invocations, and other response items into the message’s content field, rather than additional_kwargs. We recommend this format for new applications.
To trigger a web search, pass {"type": "web_search_preview"} to the model as you would another tool.
You can also pass built-in tools as invocation params:
llm.invoke("...", tools=[{"type": "web_search_preview"}])
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4.1-mini", output_version="v1")

tool = {"type": "web_search_preview"}
llm_with_tools = llm.bind_tools([tool])

response = llm_with_tools.invoke("What was a positive news story from today?")
Note that the response includes structured content blocks that include both the text of the response and OpenAI annotations citing its sources. The output message will also contain information from any tool invocations:
response.content_blocks
[{'type': 'web_search_call',
  'id': 'ws_68af6ac605848195b7ce59c3293b59100cd6678a2b812fed',
  'query': 'positive news stories today',
  'action': {'query': 'positive news stories today', 'type': 'search'},
  'status': 'completed'},
 {'type': 'web_search_result',
  'id': 'ws_68af6ac605848195b7ce59c3293b59100cd6678a2b812fed'},
 {'type': 'text',
  'text': 'Here are some positive news stories from today...',
  'annotations': [{'end_index': 587,
    'start_index': 484,
    'title': 'Positive News Highlights | AI, PFAS Breakthroughs & More — August 2025 — Podego',
    'type': 'citation',
    'url': 'https://www.podego.com/insights/august-2025-good-news-ai-pfas-stories?utm_source=openai'},
   {'end_index': 3335,
    'start_index': 3155,
    'title': '7 stories of optimism this week (19.08.25-25.08.25) - Conservation Optimism',
    'type': 'citation',
    'url': 'https://conservationoptimism.org/7-stories-of-optimism-this-week-19-08-25-25-08-25/?utm_source=openai'}],
  'id': 'msg_68af6ac75aa881958de4d8758b251c860cd6678a2b812fed'}]
You can recover just the text content of the response as a string by using response.text. For example, to stream response text:
for token in llm_with_tools.stream("..."):
    print(token.text, end="|")
See the streaming guide for more detail.

Image generation

Requires langchain-openai>=0.3.19
To trigger an image generation, pass {"type": "image_generation"} to the model as you would another tool.
You can also pass built-in tools as invocation params:
llm.invoke("...", tools=[{"type": "image_generation"}])
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4.1-mini", output_version="v1")

tool = {"type": "image_generation", "quality": "low"}

llm_with_tools = llm.bind_tools([tool])

ai_message = llm_with_tools.invoke(
    "Draw a picture of a cute fuzzy cat with an umbrella"
)
import base64

from IPython.display import Image

image = next(
    item for item in ai_message.content_blocks if item["type"] == "image"
)
Image(base64.b64decode(image["base64"]), width=200)

To trigger a file search, pass a file search tool to the model as you would another tool. You will need to populate an OpenAI-managed vector store and include the vector store ID in the tool definition. See OpenAI documentation for more detail.
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4.1-mini", output_version="v1")

openai_vector_store_ids = [
    "vs_...",  # your IDs here
]

tool = {
    "type": "file_search",
    "vector_store_ids": openai_vector_store_ids,
}
llm_with_tools = llm.bind_tools([tool])

response = llm_with_tools.invoke("What is deep research by OpenAI?")
print(response.text)
Deep Research by OpenAI is...
As with web search, the response will include content blocks with citations:
for block in response.content_blocks:
    if block["type"] == "non_standard":
        print(block["value"].get("type"))
    else:
        print(block["type"])
file_search_call
text
text_block = next(block for block in response.content_blocks if block["type"] == "text")

text_block["annotations"][:2]
[{'type': 'citation',
  'title': 'deep_research_blog.pdf',
  'extras': {'file_id': 'file-3UzgX7jcC8Dt9ZAFzywg5k', 'index': 2712}},
 {'type': 'citation',
  'title': 'deep_research_blog.pdf',
  'extras': {'file_id': 'file-3UzgX7jcC8Dt9ZAFzywg5k', 'index': 2712}}]
It will also include information from the built-in tool invocations:
response.content[0]
{'id': 'fs_685d9e7d48408191b9e34ad359069ede019138cfaaf3cea8',
 'queries': ['deep research by OpenAI'],
 'status': 'completed',
 'type': 'file_search_call'}

Computer use

ChatOpenAI supports the "computer-use-preview" model, which is a specialized model for the built-in computer use tool. To enable, pass a computer use tool as you would pass another tool. Currently, tool outputs for computer use are present in the message content field. To reply to the computer use tool call, construct a ToolMessage with {"type": "computer_call_output"} in its additional_kwargs. The content of the message will be a screenshot. Below, we demonstrate a simple example. First, load two screenshots:
import base64


def load_png_as_base64(file_path):
    with open(file_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
        return encoded_string.decode("utf-8")


screenshot_1_base64 = load_png_as_base64(
    "/path/to/screenshot_1.png"
)  # perhaps a screenshot of an application
screenshot_2_base64 = load_png_as_base64(
    "/path/to/screenshot_2.png"
)  # perhaps a screenshot of the Desktop
from langchain_openai import ChatOpenAI

# Initialize model
llm = ChatOpenAI(
    model="computer-use-preview",
    truncation="auto",
    output_version="responses/v1",
)

# Bind computer-use tool
tool = {
    "type": "computer_use_preview",
    "display_width": 1024,
    "display_height": 768,
    "environment": "browser",
}
llm_with_tools = llm.bind_tools([tool])

# Construct input message
input_message = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": (
                "Click the red X to close and reveal my Desktop. "
                "Proceed, no confirmation needed."
            ),
        },
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_1_base64}",
        },
    ],
}

# Invoke model
response = llm_with_tools.invoke(
    [input_message],
    reasoning={
        "generate_summary": "concise",
    },
)
The response will include a call to the computer-use tool in its content:
response.content
[{'id': 'rs_685da051742c81a1bb35ce46a9f3f53406b50b8696b0f590',
  'summary': [{'text': "Clicking red 'X' to show desktop",
    'type': 'summary_text'}],
  'type': 'reasoning'},
 {'id': 'cu_685da054302481a1b2cc43b56e0b381706b50b8696b0f590',
  'action': {'button': 'left', 'type': 'click', 'x': 14, 'y': 38},
  'call_id': 'call_zmQerFBh4PbBE8mQoQHkfkwy',
  'pending_safety_checks': [],
  'status': 'completed',
  'type': 'computer_call'}]
We next construct a ToolMessage with these properties:
  1. It has a tool_call_id matching the call_id from the computer-call.
  2. It has {"type": "computer_call_output"} in its additional_kwargs.
  3. Its content is either an image_url or an input_image output block (see OpenAI docs for formatting).
from langchain_core.messages import ToolMessage

tool_call_id = next(
    item["call_id"] for item in response.content if item["type"] == "computer_call"
)

tool_message = ToolMessage(
    content=[
        {
            "type": "input_image",
            "image_url": f"data:image/png;base64,{screenshot_2_base64}",
        }
    ],
    # content=f"data:image/png;base64,{screenshot_2_base64}",  # <-- also acceptable
    tool_call_id=tool_call_id,
    additional_kwargs={"type": "computer_call_output"},
)
We can now invoke the model again using the message history:
messages = [
    input_message,
    response,
    tool_message,
]

response_2 = llm_with_tools.invoke(
    messages,
    reasoning={
        "generate_summary": "concise",
    },
)
response_2.text
'VS Code has been closed, and the desktop is now visible.'
Instead of passing back the entire sequence, we can also use the previous_response_id:
previous_response_id = response.response_metadata["id"]

response_2 = llm_with_tools.invoke(
    [tool_message],
    previous_response_id=previous_response_id,
    reasoning={
        "generate_summary": "concise",
    },
)
response_2.text
'The VS Code window is closed, and the desktop is now visible. Let me know if you need any further assistance.'

Code interpreter

OpenAI implements a code interpreter tool to support the sandboxed generation and execution of code. Example use:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="o4-mini", output_version="v1")

llm_with_tools = llm.bind_tools(
    [
        {
            "type": "code_interpreter",
            # Create a new container
            "container": {"type": "auto"},
        }
    ]
)
response = llm_with_tools.invoke(
    "Write and run code to answer the question: what is 3^3?"
)
Note that the above command created a new container. We can also specify an existing container ID:
code_interpreter_calls = [
    item for item in response.content if item["type"] == "code_interpreter_call"
]
assert len(code_interpreter_calls) == 1
container_id = code_interpreter_calls[0]["extras"]["container_id"]

llm_with_tools = llm.bind_tools(
    [
        {
            "type": "code_interpreter",
            # Use an existing container
            "container": container_id,
        }
    ]
)

Remote MCP

OpenAI implements a remote MCP tool that allows for model-generated calls to MCP servers. Example use:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="o4-mini", output_version="responses/v1")

llm_with_tools = llm.bind_tools(
    [
        {
            "type": "mcp",
            "server_label": "deepwiki",
            "server_url": "https://mcp.deepwiki.com/mcp",
            "require_approval": "never",
        }
    ]
)
response = llm_with_tools.invoke(
    "What transport protocols does the 2025-03-26 version of the MCP "
    "spec (modelcontextprotocol/modelcontextprotocol) support?"
)

Managing conversation state

The Responses API supports management of conversation state.

Manually manage state

You can manage the state manually or using LangGraph, as with other chat models:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4.1-mini", output_version="responses/v1")

first_query = "Hi, I'm Bob."
messages = [{"role": "user", "content": first_query}]

response = llm.invoke(messages)
print(response.text)
Hi Bob! Nice to meet you. How can I assist you today?
second_query = "What is my name?"

messages.extend(
    [
        response,
        {"role": "user", "content": second_query},
    ]
)
second_response = llm.invoke(messages)
print(second_response.text)
You mentioned that your name is Bob. How can I assist you further, Bob?
You can use LangGraph to manage conversational threads for you in a variety of backends, including in-memory and Postgres. See this tutorial to get started.

Passing previous_response_id

When using the Responses API, LangChain messages will include an "id" field in its metadata. Passing this ID to subsequent invocations will continue the conversation. Note that this is equivalent to manually passing in messages from a billing perspective.
second_response = llm.invoke(
    "What is my name?",
    previous_response_id=response.id,
)
print(second_response.text)
Your name is Bob. How can I help you today, Bob?
ChatOpenAI can also automatically specify previous_response_id using the last response in a message sequence:
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="gpt-4.1-mini",
    output_version="responses/v1",
    use_previous_response_id=True,
)
If we set use_previous_response_id=True, input messages up to the most recent response will be dropped from request payloads, and previous_response_id will be set using the ID of the most recent response. That is,
llm.invoke(
    [
        HumanMessage("Hello"),
        AIMessage("Hi there!", id="resp_123"),
        HumanMessage("How are you?"),
    ]
)
is equivalent to:
llm.invoke([HumanMessage("How are you?")], previous_response_id="resp_123")

Reasoning output

Some OpenAI models will generate separate text content illustrating their reasoning process. See OpenAI’s reasoning documentation for details. OpenAI can return a summary of the model’s reasoning (although it doesn’t expose the raw reasoning tokens). To configure ChatOpenAI to return this summary, specify the reasoning parameter. ChatOpenAI will automatically route to the Responses API if this parameter is set.
from langchain_openai import ChatOpenAI

reasoning = {
    "effort": "medium",  # 'low', 'medium', or 'high'
    "summary": "auto",  # 'detailed', 'auto', or None
}

llm = ChatOpenAI(model="gpt-5-nano", reasoning=reasoning, output_version="v1")
response = llm.invoke("What is 3^3?")

# Output
response.text
'3³ = 3 × 3 × 3 = 27.'
# Reasoning
for block in response.content_blocks:
    if block["type"] == "reasoning":
        print(block["reasoning"])
**Calculating the power of three**

The user is asking about 3 raised to the power of 3. That's a pretty simple calculation! I know that 3^3 equals 27, so I can say, "3 to the power of 3 equals 27." I might also include a quick explanation that it's 3 multiplied by itself three times: 3 × 3 × 3 = 27. So, the answer is definitely 27.

Fine-tuning

You can call fine-tuned OpenAI models by passing in your corresponding modelName parameter. This generally takes the form of ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}. For example:
fine_tuned_model = ChatOpenAI(
    temperature=0, model_name="ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR"
)

fine_tuned_model.invoke(messages)
AIMessage(content="J'adore la programmation.", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-0f39b30e-c56e-4f3b-af99-5c948c984146-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})

Multimodal Inputs (images, PDFs, audio)

OpenAI has models that support multimodal inputs. You can pass in images, PDFs, or audio to these models. For more information on how to do this in LangChain, head to the multimodal inputs docs. You can see the list of models that support different modalities in OpenAI’s documentation. For all modalities, LangChain supports both its cross-provider standard as well as OpenAI’s native content-block format. To pass multimodal data into ChatOpenAI, create a content block containing the data and incorporate it into a message, e.g., as below:
message = {
    "role": "user",
    "content": [
        {
            "type": "text",
            # Update prompt as desired
            "text": "Describe the (image / PDF / audio...)",
        },
        content_block,
    ],
}
See below for examples of content blocks.

Predicted output

Requires langchain-openai>=0.2.6
Some OpenAI models (such as their gpt-4o and gpt-4o-mini series) support Predicted Outputs, which allow you to pass in a known portion of the LLM’s expected output ahead of time to reduce latency. This is useful for cases such as editing text or code, where only a small part of the model’s output will change. Here’s an example:
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
    /// <summary>
    /// Gets or sets the user's first name.
    /// </summary>
    public string FirstName { get; set; }

    /// <summary>
    /// Gets or sets the user's last name.
    /// </summary>
    public string LastName { get; set; }

    /// <summary>
    /// Gets or sets the user's username.
    /// </summary>
    public string Username { get; set; }
}
"""

llm = ChatOpenAI(model="gpt-4o")
query = (
    "Replace the Username property with an Email property. "
    "Respond only with code, and with no markdown formatting."
)
response = llm.invoke(
    [{"role": "user", "content": query}, {"role": "user", "content": code}],
    prediction={"type": "content", "content": code},
)
print(response.content)
print(response.response_metadata)
/// <summary>
/// Represents a user with a first name, last name, and email.
/// </summary>
public class User
{
    /// <summary>
    /// Gets or sets the user's first name.
    /// </summary>
    public string FirstName { get; set; }

    /// <summary>
    /// Gets or sets the user's last name.
    /// </summary>
    public string LastName { get; set; }

    /// <summary>
    /// Gets or sets the user's email.
    /// </summary>
    public string Email { get; set; }
}
{'token_usage': {'completion_tokens': 226, 'prompt_tokens': 166, 'total_tokens': 392, 'completion_tokens_details': {'accepted_prediction_tokens': 49, 'audio_tokens': None, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 107}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_45cf54deae', 'finish_reason': 'stop', 'logprobs': None}
Note that currently predictions are billed as additional tokens and may increase your usage and costs in exchange for this reduced latency.

Audio Generation (Preview)

Requires langchain-openai>=0.2.3
OpenAI has a new audio generation feature that allows you to use audio inputs and outputs with the gpt-4o-audio-preview model.
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="gpt-4o-audio-preview",
    temperature=0,
    model_kwargs={
        "modalities": ["text", "audio"],
        "audio": {"voice": "alloy", "format": "wav"},
    },
)

output_message = llm.invoke(
    [
        ("human", "Are you made by OpenAI? Just answer yes or no"),
    ]
)
output_message.additional_kwargs['audio'] will contain a dictionary like
{
    'data': '<audio data b64-encoded',
    'expires_at': 1729268602,
    'id': 'audio_67127d6a44348190af62c1530ef0955a',
    'transcript': 'Yes.'
}
and the format will be what was passed in model_kwargs['audio']['format']. We can also pass this message with audio data back to the model as part of a message history before openai expires_at is reached.
**Output audio is stored under the audio key in AIMessage.additional_kwargs, but input content blocks are typed with an input_audio type and key in HumanMessage.content lists. **For more information, see OpenAI’s audio docs.
history = [
    ("human", "Are you made by OpenAI? Just answer yes or no"),
    output_message,
    ("human", "And what is your name? Just give your name."),
]
second_output_message = llm.invoke(history)

Flex processing

OpenAI offers a variety of service tiers. The “flex” tier offers cheaper pricing for requests, with the trade-off that responses may take longer and resources might not always be available. This approach is best suited for non-critical tasks, including model testing, data enhancement, or jobs that can be run asynchronously. To use it, initialize the model with service_tier="flex":
llm = ChatOpenAI(model="o4-mini", service_tier="flex")
Note that this is a beta feature that is only available for a subset of models. See OpenAI docs for more detail.

API reference

For detailed documentation of all ChatOpenAI features and configurations head to the API reference.