Skip to main content
LangChain v1.0Welcome to the new LangChain documentation! If you encounter any issues or have feedback, please open an issue so we can improve. Archived v0 documentation can be found here.See the release notes and migration guide for a complete list of changes and instructions on how to upgrade your code.
LangChain implements a streaming system to surface real-time updates. Streaming is crucial for enhancing the responsiveness of applications built on LLMs. By displaying output progressively, even before a complete response is ready, streaming significantly improves user experience (UX), particularly when dealing with the latency of LLMs.

Overview

LangChain’s streaming system lets you surface live feedback from agent runs to your application. What’s possible with LangChain streaming:

Agent progress

To stream agent progress, use the stream() or astream() methods with stream_mode="updates". This emits an event after every agent step. For example, if you have an agent that calls a tool once, you should see the following updates:
  • LLM node: AIMessage with tool call requests
  • Tool node: ToolMessage with execution result
  • LLM node: Final AI response
Streaming agent progress
from langchain.agents import create_agent

def get_weather(city: str) -> str:
    """Get weather for a given city."""

    return f"It's always sunny in {city}!"

agent = create_agent(
    model="openai:gpt-5-nano",
    tools=[get_weather],
)
for chunk in agent.stream(  
    {"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
    stream_mode="updates",
):
    for step, data in chunk.items():
        print(f"step: {step}")
        print(f"content: {data['messages'][-1].content_blocks}")
Output
step: model
content: [{'type': 'tool_call', 'name': 'get_weather', 'args': {'city': 'San Francisco'}, 'id': 'call_OW2NYNsNSKhRZpjW0wm2Aszd'}]

step: tools
content: [{'type': 'text', 'text': "It's always sunny in San Francisco!"}]

step: model
content: [{'type': 'text', 'text': 'It's always sunny in San Francisco!'}]

LLM tokens

To stream tokens as they are produced by the LLM, use stream_mode="messages". Below you can see the output of the agent streaming tool calls and the final response.
Streaming LLM tokens
from langchain.agents import create_agent

def get_weather(city: str) -> str:
    """Get weather for a given city."""

    return f"It's always sunny in {city}!"

agent = create_agent(
    model="openai:gpt-5-nano",
    tools=[get_weather],
)
for token, metadata in agent.stream(  
    {"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
    stream_mode="messages",
):
    print(f"node: {metadata['langgraph_node']}")
    print(f"content: {token.content_blocks}")
    print("\n")
Output
node: model
content: [{'type': 'tool_call_chunk', 'id': 'call_vbCyBcP8VuneUzyYlSBZZsVa', 'name': 'get_weather', 'args': '', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '{"', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': 'city', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '":"', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': 'San', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': ' Francisco', 'index': 0}]


node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '"}', 'index': 0}]


node: model
content: []


node: tools
content: [{'type': 'text', 'text': "It's always sunny in San Francisco!"}]


node: model
content: []


node: model
content: [{'type': 'text', 'text': 'Here'}]


node: model
content: [{'type': 'text', 'text': ''s'}]


node: model
content: [{'type': 'text', 'text': ' what'}]


node: model
content: [{'type': 'text', 'text': ' I'}]


node: model
content: [{'type': 'text', 'text': ' got'}]


node: model
content: [{'type': 'text', 'text': ':'}]


node: model
content: [{'type': 'text', 'text': ' "'}]


node: model
content: [{'type': 'text', 'text': "It's"}]


node: model
content: [{'type': 'text', 'text': ' always'}]


node: model
content: [{'type': 'text', 'text': ' sunny'}]


node: model
content: [{'type': 'text', 'text': ' in'}]


node: model
content: [{'type': 'text', 'text': ' San'}]


node: model
content: [{'type': 'text', 'text': ' Francisco'}]


node: model
content: [{'type': 'text', 'text': '!"\n\n'}]

Custom updates

To stream updates from tools as they are executed, you can use get_stream_writer.
Streaming custom updates
from langchain.agents import create_agent
from langgraph.config import get_stream_writer  

def get_weather(city: str) -> str:
    """Get weather for a given city."""
    writer = get_stream_writer()  
    # stream any arbitrary data
    writer(f"Looking up data for city: {city}")
    writer(f"Acquired data for city: {city}")
    return f"It's always sunny in {city}!"

agent = create_agent(
    model="anthropic:claude-sonnet-4-5",
    tools=[get_weather],
)

for chunk in agent.stream(
    {"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
    stream_mode="custom"
):
    print(chunk)
Output
Looking up data for city: San Francisco
Acquired data for city: San Francisco
If you add get_stream_writer inside your tool, you won’t be able to invoke the tool outside of a LangGraph execution context.

Stream multiple modes

You can specify multiple streaming modes by passing stream mode as a list: stream_mode=["updates", "custom"]:
Streaming multiple modes
from langchain.agents import create_agent
from langgraph.config import get_stream_writer

def get_weather(city: str) -> str:
    """Get weather for a given city."""
    writer = get_stream_writer()
    writer(f"Looking up data for city: {city}")
    writer(f"Acquired data for city: {city}")
    return f"It's always sunny in {city}!"

agent = create_agent(
    model="openai:gpt-5-nano",
    tools=[get_weather],
)

for stream_mode, chunk in agent.stream(  
    {"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
    stream_mode=["updates", "custom"]
):
    print(f"stream_mode: {stream_mode}")
    print(f"content: {chunk}")
    print("\n")
Output
stream_mode: updates
content: {'model': {'messages': [AIMessage(content='', response_metadata={'token_usage': {'completion_tokens': 280, 'prompt_tokens': 132, 'total_tokens': 412, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 256, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_provider': 'openai', 'model_name': 'gpt-5-nano-2025-08-07', 'system_fingerprint': None, 'id': 'chatcmpl-C9tlgBzGEbedGYxZ0rTCz5F7OXpL7', 'service_tier': 'default', 'finish_reason': 'tool_calls', 'logprobs': None}, id='lc_run--480c07cb-e405-4411-aa7f-0520fddeed66-0', tool_calls=[{'name': 'get_weather', 'args': {'city': 'San Francisco'}, 'id': 'call_KTNQIftMrl9vgNwEfAJMVu7r', 'type': 'tool_call'}], usage_metadata={'input_tokens': 132, 'output_tokens': 280, 'total_tokens': 412, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 256}})]}}


stream_mode: custom
content: Looking up data for city: San Francisco


stream_mode: custom
content: Acquired data for city: San Francisco


stream_mode: updates
content: {'tools': {'messages': [ToolMessage(content="It's always sunny in San Francisco!", name='get_weather', tool_call_id='call_KTNQIftMrl9vgNwEfAJMVu7r')]}}


stream_mode: updates
content: {'model': {'messages': [AIMessage(content='San Francisco weather: It's always sunny in San Francisco!\n\n', response_metadata={'token_usage': {'completion_tokens': 764, 'prompt_tokens': 168, 'total_tokens': 932, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 704, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_provider': 'openai', 'model_name': 'gpt-5-nano-2025-08-07', 'system_fingerprint': None, 'id': 'chatcmpl-C9tljDFVki1e1haCyikBptAuXuHYG', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='lc_run--acbc740a-18fe-4a14-8619-da92a0d0ee90-0', usage_metadata={'input_tokens': 168, 'output_tokens': 764, 'total_tokens': 932, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 704}})]}}

Disable streaming

In some applications you might need to disable streaming of individual tokens for a given model. This is useful in multi-agent systems to control which agents stream their output. See the Models guide to learn how to disable streaming.
I