Skip to main content
LangChain provides prebuilt middleware for common use cases. Each middleware is production-ready and configurable for your specific needs.

Provider-agnostic middleware

The following middleware work with any LLM provider:
MiddlewareDescription
SummarizationAutomatically summarize conversation history when approaching token limits.
Human-in-the-loopPause execution for human approval of tool calls.
Model call limitLimit the number of model calls to prevent excessive costs.
Tool call limitControl tool execution by limiting call counts.
Model fallbackAutomatically fallback to alternative models when primary fails.
PII detectionDetect and handle Personally Identifiable Information (PII).
To-do listEquip agents with task planning and tracking capabilities.
LLM tool selectorUse an LLM to select relevant tools before calling main model.
Tool retryAutomatically retry failed tool calls with exponential backoff.
LLM tool emulatorEmulate tool execution using anLLM for testing purposes.
Context editingManage conversation context by trimming or clearing tool uses.

Summarization

Automatically summarize conversation history when approaching token limits, preserving recent messages while compressing older context. Summarization is useful for the following:
  • Long-running conversations that exceed context windows.
  • Multi-turn dialogues with extensive history.
  • Applications where preserving full conversation context matters.
API reference: SummarizationMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            trigger={"tokens": 4000},
            keep={"messages": 20},
        ),
    ],
)
model
string | BaseChatModel
required
Model for generating summaries. Can be a model identifier string (e.g., 'openai:gpt-4o-mini') or a BaseChatModel instance. See init_chat_model for more information.
trigger
dict | list[dict]
Conditions for triggering summarization. Can be:
  • A single condition dict (all properties must be met - AND logic)
  • A list of condition dicts (any condition must be met - OR logic)
Each condition can include:
  • fraction (float): Fraction of model’s context size (0-1)
  • tokens (int): Absolute token count
  • messages (int): Message count
At least one property must be specified per condition. If not provided, summarization will not trigger automatically.
keep
dict
default:"{messages: 20}"
How much context to preserve after summarization. Specify exactly one of:
  • fraction (float): Fraction of model’s context size to keep (0-1)
  • tokens (int): Absolute token count to keep
  • messages (int): Number of recent messages to keep
token_counter
function
Custom token counting function. Defaults to character-based counting.
summary_prompt
string
Custom prompt template for summarization. Uses built-in template if not specified. The template should include {messages} placeholder where conversation history will be inserted.
trim_tokens_to_summarize
number
default:"4000"
Maximum number of tokens to include when generating the summary. Messages will be trimmed to fit this limit before summarization.
summary_prefix
string
Prefix to add to the summary message. If not provided, a default prefix is used.
max_tokens_before_summary
number
deprecated
Deprecated: Use trigger: {"tokens": value} instead. Token threshold for triggering summarization.
messages_to_keep
number
deprecated
Deprecated: Use keep: {"messages": value} instead. Recent messages to preserve.
The summarization middleware monitors message token counts and automatically summarizes older messages when thresholds are reached.Trigger conditions control when summarization runs:
  • Single condition object (all properties must be met - AND logic)
  • Array of conditions (any condition must be met - OR logic)
  • Each condition can use fraction (of model’s context size), tokens (absolute count), or messages (message count)
Keep conditions control how much context to preserve (specify exactly one):
  • fraction - Fraction of model’s context size to keep
  • tokens - Absolute token count to keep
  • messages - Number of recent messages to keep
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware


# Single condition: trigger if tokens >= 4000 AND messages >= 10
agent = create_agent(
    model="gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            trigger={"tokens": 4000, "messages": 10},
            keep={"messages": 20},
        ),
    ],
)

# Multiple conditions
agent2 = create_agent(
    model="gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            trigger=[
                {"tokens": 5000, "messages": 3},
                {"tokens": 3000, "messages": 6},
            ],
            keep={"messages": 20},
        ),
    ],
)

# Using fractional limits
agent3 = create_agent(
    model="gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="gpt-4o-mini",
            trigger={"fraction": 0.8},
            keep={"fraction": 0.3},
        ),
    ],
)

Human-in-the-loop

Pause agent execution for human approval, editing, or rejection of tool calls before they execute. Human-in-the-loop is useful for the following:
  • High-stakes operations requiring human approval (e.g. database writes, financial transactions).
  • Compliance workflows where human oversight is mandatory.
  • Long-running conversations where human feedback guides the agent.
API reference: HumanInTheLoopMiddleware
Human-in-the-loop middleware requires a checkpointer to maintain state across interruptions.
from langchain.agents import create_agent
from langchain.agents.middleware import HumanInTheLoopMiddleware
from langgraph.checkpoint.memory import InMemorySaver

agent = create_agent(
    model="gpt-4o",
    tools=[read_email_tool, send_email_tool],
    checkpointer=InMemorySaver(),
    middleware=[
        HumanInTheLoopMiddleware(
            interrupt_on={
                "send_email_tool": {
                    "allowed_decisions": ["approve", "edit", "reject"],
                },
                "read_email_tool": False,
            }
        ),
    ],
)
For complete examples, configuration options, and integration patterns, see the Human-in-the-loop documentation.

Model call limit

Limit the number of model calls to prevent infinite loops or excessive costs. Model call limit is useful for the following:
  • Preventing runaway agents from making too many API calls.
  • Enforcing cost controls on production deployments.
  • Testing agent behavior within specific call budgets.
API reference: ModelCallLimitMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import ModelCallLimitMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        ModelCallLimitMiddleware(
            thread_limit=10,
            run_limit=5,
            exit_behavior="end",
        ),
    ],
)
thread_limit
number
Maximum model calls across all runs in a thread. Defaults to no limit.
run_limit
number
Maximum model calls per single invocation. Defaults to no limit.
exit_behavior
string
default:"end"
Behavior when limit is reached. Options: 'end' (graceful termination) or 'error' (raise exception)
The middleware tracks model calls across two scopes:
  • Thread limit - Max calls across all runs in a conversation thread (requires checkpointer)
  • Run limit - Max calls per single invocation (resets each turn)
Exit behaviors:
  • 'end' - Graceful termination (default)
  • 'error' - Raise/throw exception
from langchain.agents import create_agent
from langchain.agents.middleware import ModelCallLimitMiddleware
from langgraph.checkpoint.memory import InMemorySaver

agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, calculator_tool],
    checkpointer=InMemorySaver(),
    middleware=[
        ModelCallLimitMiddleware(
            thread_limit=10,
            run_limit=5,
            exit_behavior="end",
        ),
    ],
)

Tool call limit

Control agent execution by limiting the number of tool calls, either globally across all tools or for specific tools. Tool call limits are useful for the following:
  • Preventing excessive calls to expensive external APIs.
  • Limiting web searches or database queries.
  • Enforcing rate limits on specific tool usage.
  • Protecting against runaway agent loops.
API reference: ToolCallLimitMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import ToolCallLimitMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, database_tool],
    middleware=[
        # Global limit
        ToolCallLimitMiddleware(thread_limit=20, run_limit=10),
        # Tool-specific limit
        ToolCallLimitMiddleware(
            tool_name="search",
            thread_limit=5,
            run_limit=3,
        ),
    ],
)
tool_name
string
Name of specific tool to limit. If not provided, limits apply to all tools globally.
thread_limit
number
Maximum tool calls across all runs in a thread (conversation). Persists across multiple invocations with the same thread ID. Requires a checkpointer to maintain state. None means no thread limit.
run_limit
number
Maximum tool calls per single invocation (one user message → response cycle). Resets with each new user message. None means no run limit.Note: At least one of thread_limit or run_limit must be specified.
exit_behavior
string
default:"continue"
Behavior when limit is reached:
  • 'continue' (default) - Block exceeded tool calls with error messages, let other tools and the model continue. The model decides when to end based on the error messages.
  • 'error' - Raise a ToolCallLimitExceededError exception, stopping execution immediately
  • 'end' - Stop execution immediately with a ToolMessage and AI message for the exceeded tool call. Only works when limiting a single tool; raises NotImplementedError if other tools have pending calls.
Specify limits with:
  • Thread limit - Max calls across all runs in a conversation (requires checkpointer)
  • Run limit - Max calls per single invocation (resets each turn)
Exit behaviors:
  • 'continue' (default) - Block exceeded calls with error messages, agent continues
  • 'error' - Raise exception immediately
  • 'end' - Stop with ToolMessage + AI message (single-tool scenarios only)
from langchain.agents import create_agent
from langchain.agents.middleware import ToolCallLimitMiddleware


global_limiter = ToolCallLimitMiddleware(thread_limit=20, run_limit=10)
search_limiter = ToolCallLimitMiddleware(tool_name="search", thread_limit=5, run_limit=3)
database_limiter = ToolCallLimitMiddleware(tool_name="query_database", thread_limit=10)
strict_limiter = ToolCallLimitMiddleware(tool_name="scrape_webpage", run_limit=2, exit_behavior="error")

agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, database_tool, scraper_tool],
    middleware=[global_limiter, search_limiter, database_limiter, strict_limiter],
)

Model fallback

Automatically fallback to alternative models when the primary model fails. Model fallback is useful for the following:
  • Building resilient agents that handle model outages.
  • Cost optimization by falling back to cheaper models.
  • Provider redundancy across OpenAI, Anthropic, etc.
API reference: ModelFallbackMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import ModelFallbackMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        ModelFallbackMiddleware(
            "gpt-4o-mini",
            "claude-3-5-sonnet-20241022",
        ),
    ],
)
first_model
string | BaseChatModel
required
First fallback model to try when the primary model fails. Can be a model identifier string (e.g., 'openai:gpt-4o-mini') or a BaseChatModel instance.
*additional_models
string | BaseChatModel
Additional fallback models to try in order if previous models fail
The middleware tries fallback models in order when the primary model fails.
from langchain.agents import create_agent
from langchain.agents.middleware import ModelFallbackMiddleware


agent = create_agent(
    model="gpt-4o",  # Primary model
    tools=[search_tool, calculator_tool],
    middleware=[
        ModelFallbackMiddleware(
            "gpt-4o-mini",
            "claude-3-5-sonnet-20241022",
            "claude-3-haiku-20240307",
        ),
    ],
)

PII detection

Detect and handle Personally Identifiable Information (PII) in conversations using configurable strategies. PII detection is useful for the following:
  • Healthcare and financial applications with compliance requirements.
  • Customer service agents that need to sanitize logs.
  • Any application handling sensitive user data.
API reference: PIIMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import PIIMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        PIIMiddleware("email", strategy="redact", apply_to_input=True),
        PIIMiddleware("credit_card", strategy="mask", apply_to_input=True),
    ],
)
pii_type
string
required
Type of PII to detect. Can be a built-in type (email, credit_card, ip, mac_address, url) or a custom type name.
strategy
string
default:"redact"
How to handle detected PII. Options:
  • 'block' - Raise exception when detected
  • 'redact' - Replace with [REDACTED_TYPE]
  • 'mask' - Partially mask (e.g., ****-****-****-1234)
  • 'hash' - Replace with deterministic hash
detector
function | regex
Custom detector function or regex pattern. If not provided, uses built-in detector for the PII type.
apply_to_input
boolean
default:"True"
Check user messages before model call
apply_to_output
boolean
default:"False"
Check AI messages after model call
apply_to_tool_results
boolean
default:"False"
Check tool result messages after execution
The middleware supports detecting built-in PII types (email, credit_card, ip, mac_address, url) or custom types with regex patterns.Detection strategies:
  • 'block' - Raise exception when detected
  • 'redact' - Replace with [REDACTED_TYPE]
  • 'mask' - Partially mask (e.g., ****-****-****-1234)
  • 'hash' - Replace with deterministic hash
Application scope:
  • apply_to_input - Check user messages before model call
  • apply_to_output - Check AI messages after model call
  • apply_to_tool_results - Check tool result messages after execution
from langchain.agents import create_agent
from langchain.agents.middleware import PIIMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[database_tool, email_tool],
    middleware=[
        PIIMiddleware("email", strategy="redact", apply_to_input=True),
        PIIMiddleware("credit_card", strategy="mask", apply_to_input=True),
        PIIMiddleware("api_key", detector=r"sk-[a-zA-Z0-9]{32}", strategy="block"),
        PIIMiddleware("ssn", detector=r"\d{3}-\d{2}-\d{4}", strategy="hash", apply_to_tool_results=True),
    ],
)

To-do list

Equip agents with task planning and tracking capabilities for complex multi-step tasks. To-do lists are useful for the following:
  • Complex multi-step tasks requiring coordination across multiple tools.
  • Long-running operations where progress visibility is important.
This middleware automatically provides agents with a write_todos tool and system prompts to guide effective task planning.
API reference: TodoListMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import TodoListMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[read_file, write_file, run_tests],
    middleware=[TodoListMiddleware()],
)
system_prompt
string
Custom system prompt for guiding todo usage. Uses built-in prompt if not specified.
tool_description
string
Custom description for the write_todos tool. Uses built-in description if not specified.
Just as humans are more effective when they write down and track tasks, agents benefit from structured task management to break down complex problems.
from langchain.agents import create_agent
from langchain.agents.middleware import TodoListMiddleware
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool


@tool
def read_file(file_path: str) -> str:
    """Read contents of a file."""
    with open(file_path) as f:
        return f.read()


@tool
def write_file(file_path: str, content: str) -> str:
    """Write content to a file."""
    with open(file_path, 'w') as f:
        f.write(content)
    return f"Wrote {len(content)} characters to {file_path}"


agent = create_agent(
    model="gpt-4o",
    tools=[read_file, write_file],
    middleware=[TodoListMiddleware()],
)

result = agent.invoke({
    "messages": [HumanMessage("Refactor the authentication module")]
})

print(result["todos"])  # Track progress

LLM tool selector

Use an LLM to intelligently select relevant tools before calling the main model. LLM tool selectors are useful for the following:
  • Agents with many tools (10+) where most aren’t relevant per query.
  • Reducing token usage by filtering irrelevant tools.
  • Improving model focus and accuracy.
API reference: LLMToolSelectorMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[tool1, tool2, tool3, tool4, tool5, ...],
    middleware=[
        LLMToolSelectorMiddleware(
            model="gpt-4o-mini",
            max_tools=3,
            always_include=["search"],
        ),
    ],
)
model
string | BaseChatModel
Model for tool selection. Can be a model identifier string (e.g., 'openai:gpt-4o-mini') or a BaseChatModel instance. See init_chat_model for more information.Defaults to the agent’s main model.
system_prompt
string
Instructions for the selection model. Uses built-in prompt if not specified.
max_tools
number
Maximum number of tools to select. Defaults to no limit.
always_include
list[string]
List of tool names to always include in the selection
The middleware uses a (typically cheaper) LLM to analyze the user’s query and select the most relevant subset of tools.Benefits:
  • Shorter prompts - Reduce complexity by exposing only relevant tools
  • Better accuracy - Models choose correctly from fewer options
  • Cost savings - Use cheaper model for selection
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[search_web, query_database, send_email, get_weather, ...],
    middleware=[
        LLMToolSelectorMiddleware(
            model="gpt-4o-mini",
            max_tools=3,
            always_include=["search_web"],
        ),
    ],
)

Tool retry

Automatically retry failed tool calls with configurable exponential backoff. Tool retry is useful for the following:
  • Handling transient failures in external API calls.
  • Improving reliability of network-dependent tools.
  • Building resilient agents that gracefully handle temporary errors.
API reference: ToolRetryMiddleware
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware

agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, database_tool],
    middleware=[
        ToolRetryMiddleware(
            max_retries=3,
            backoff_factor=2.0,
            initial_delay=1.0,
        ),
    ],
)
max_retries
number
default:"2"
Maximum number of retry attempts after the initial call (3 total attempts with default)
tools
list[BaseTool | str]
Optional list of tools or tool names to apply retry logic to. If None, applies to all tools.
retry_on
tuple[type[Exception], ...] | callable
default:"(Exception,)"
Either a tuple of exception types to retry on, or a callable that takes an exception and returns True if it should be retried.
on_failure
string | callable
default:"return_message"
Behavior when all retries are exhausted. Options:
  • 'return_message' - Return a ToolMessage with error details (allows LLM to handle failure)
  • 'raise' - Re-raise the exception (stops agent execution)
  • Custom callable - Function that takes the exception and returns a string for the ToolMessage content
backoff_factor
number
default:"2.0"
Multiplier for exponential backoff. Each retry waits initial_delay * (backoff_factor ** retry_number) seconds. Set to 0.0 for constant delay.
initial_delay
number
default:"1.0"
Initial delay in seconds before first retry
max_delay
number
default:"60.0"
Maximum delay in seconds between retries (caps exponential backoff growth)
jitter
boolean
default:"true"
Whether to add random jitter (±25%) to delay to avoid thundering herd
The middleware automatically retries failed tool calls with exponential backoff.Key configuration:
  • max_retries - Number of retry attempts (default: 2)
  • backoff_factor - Multiplier for exponential backoff (default: 2.0)
  • initial_delay - Starting delay in seconds (default: 1.0)
  • max_delay - Cap on delay growth (default: 60.0)
  • jitter - Add random variation (default: True)
Failure handling:
  • on_failure='return_message' - Return error message
  • on_failure='raise' - Re-raise exception
  • Custom callable - Function returning error message
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware


agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, database_tool, api_tool],
    middleware=[
        ToolRetryMiddleware(
            max_retries=3,
            backoff_factor=2.0,
            initial_delay=1.0,
            max_delay=60.0,
            jitter=True,
            tools=["api_tool"],
            retry_on=(ConnectionError, TimeoutError),
            on_failure="return_message",
        ),
    ],
)

LLM tool emulator

Emulate tool execution using an LLM for testing purposes, replacing actual tool calls with AI-generated responses. LLM tool emulators are useful for the following:
  • Testing agent behavior without executing real tools.
  • Developing agents when external tools are unavailable or expensive.
  • Prototyping agent workflows before implementing actual tools.
API reference: LLMToolEmulator
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolEmulator

agent = create_agent(
    model="gpt-4o",
    tools=[get_weather, search_database, send_email],
    middleware=[
        LLMToolEmulator(),  # Emulate all tools
    ],
)
tools
list[str | BaseTool]
List of tool names (str) or BaseTool instances to emulate. If None (default), ALL tools will be emulated. If empty list, no tools will be emulated.
model
string | BaseChatModel
default:"anthropic:claude-3-5-sonnet-latest"
Model to use for generating emulated tool responses. Can be a model identifier string (e.g., 'openai:gpt-4o-mini') or a BaseChatModel instance. See init_chat_model for more information.
The middleware uses an LLM to generate plausible responses for tool calls instead of executing the actual tools.
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolEmulator
from langchain_core.tools import tool


@tool
def get_weather(location: str) -> str:
    """Get the current weather for a location."""
    return f"Weather in {location}"

@tool
def send_email(to: str, subject: str, body: str) -> str:
    """Send an email."""
    return "Email sent"


# Emulate all tools
agent = create_agent(
    model="gpt-4o",
    tools=[get_weather, send_email],
    middleware=[LLMToolEmulator()],
)

# Emulate specific tools only
agent2 = create_agent(
    model="gpt-4o",
    tools=[get_weather, send_email],
    middleware=[LLMToolEmulator(tools=["get_weather"])],
)

# Use custom model
agent3 = create_agent(
    model="gpt-4o",
    tools=[get_weather, send_email],
    middleware=[LLMToolEmulator(model="claude-sonnet-4-5-20250929")],
)

Context editing

Manage conversation context by trimming, summarizing, or clearing tool uses. Context editing is useful for the following:
  • Long conversations that need periodic context cleanup.
  • Removing failed tool attempts from context.
  • Custom context management strategies.
API reference: ContextEditingMiddleware, ClearToolUsesEdit
from langchain.agents import create_agent
from langchain.agents.middleware import ContextEditingMiddleware, ClearToolUsesEdit

agent = create_agent(
    model="gpt-4o",
    tools=[...],
    middleware=[
        ContextEditingMiddleware(
            edits=[
                ClearToolUsesEdit(
                    trigger=100000,
                    keep=3,
                ),
            ],
        ),
    ],
)
edits
list[ContextEdit]
default:"[ClearToolUsesEdit()]"
List of ContextEdit strategies to apply
token_count_method
string
default:"approximate"
Token counting method. Options: 'approximate' or 'model'
ClearToolUsesEdit options:
trigger
number
default:"100000"
Token count that triggers the edit. When the conversation exceeds this token count, older tool outputs will be cleared.
clear_at_least
number
default:"0"
Minimum number of tokens to reclaim when the edit runs. If set to 0, clears as much as needed.
keep
number
default:"3"
Number of most recent tool results that must be preserved. These will never be cleared.
clear_tool_inputs
boolean
default:"False"
Whether to clear the originating tool call parameters on the AI message. When True, tool call arguments are replaced with empty objects.
exclude_tools
list[string]
default:"()"
List of tool names to exclude from clearing. These tools will never have their outputs cleared.
placeholder
string
default:"[cleared]"
Placeholder text inserted for cleared tool outputs. This replaces the original tool message content.
The middleware applies context editing strategies when token limits are reached. The most common strategy is ClearToolUsesEdit, which clears older tool results while preserving recent ones.How it works:
  1. Monitor token count in conversation
  2. When threshold is reached, clear older tool outputs
  3. Keep most recent N tool results
  4. Optionally preserve tool call arguments for context
from langchain.agents import create_agent
from langchain.agents.middleware import ContextEditingMiddleware, ClearToolUsesEdit


agent = create_agent(
    model="gpt-4o",
    tools=[search_tool, calculator_tool, database_tool],
    middleware=[
        ContextEditingMiddleware(
            edits=[
                ClearToolUsesEdit(
                    trigger=2000,
                    keep=3,
                    clear_tool_inputs=False,
                    exclude_tools=[],
                    placeholder="[cleared]",
                ),
            ],
        ),
    ],
)

Provider-specific middleware

These middleware are optimized for specific LLM providers.

Anthropic

Middleware specifically designed for Anthropic’s Claude models.
MiddlewareDescription
Prompt cachingReduce costs by caching repetitive prompt prefixes

Anthropic prompt caching

Reduce costs by caching repetitive prompt prefixes with Anthropic models. Prompt caching is useful for the following:
  • Applications with long, repeated system prompts.
  • Agents that reuse the same context across invocations.
  • Reducing API costs for high-volume deployments.
Learn more about Anthropic prompt caching strategies and limitations.
API reference: AnthropicPromptCachingMiddleware
from langchain_anthropic import ChatAnthropic
from langchain_anthropic.middleware import AnthropicPromptCachingMiddleware
from langchain.agents import create_agent

agent = create_agent(
    model=ChatAnthropic(model="claude-sonnet-4-5-20250929"),
    system_prompt="<Your long system prompt here>",
    middleware=[AnthropicPromptCachingMiddleware(ttl="5m")],
)
type
string
default:"ephemeral"
Cache type. Only 'ephemeral' is currently supported.
ttl
string
default:"5m"
Time to live for cached content. Valid values: '5m' or '1h'
min_messages_to_cache
number
default:"0"
Minimum number of messages before caching starts
unsupported_model_behavior
string
default:"warn"
Behavior when using non-Anthropic models. Options: 'ignore', 'warn', or 'raise'
from langchain_anthropic import ChatAnthropic
from langchain_anthropic.middleware import AnthropicPromptCachingMiddleware
from langchain.agents import create_agent
from langchain_core.messages import HumanMessage


LONG_PROMPT = """
Please be a helpful assistant.

<Lots more context ...>
"""

agent = create_agent(
    model=ChatAnthropic(model="claude-sonnet-4-5-20250929"),
    system_prompt=LONG_PROMPT,
    middleware=[AnthropicPromptCachingMiddleware(ttl="5m")],
)

# cache store
agent.invoke({"messages": [HumanMessage("Hi, my name is Bob")]})

# cache hit, system prompt is cached
agent.invoke({"messages": [HumanMessage("What's my name?")]})

OpenAI

Middleware specifically designed for OpenAI models.
Coming soon! Check back for OpenAI-specific middleware optimizations.

Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.