Alpha Notice: These docs cover the v1-alpha release. Content is incomplete and subject to change.For the latest stable version, see the current LangGraph Python or LangGraph JavaScript docs.
Using Graph API
# Step 0: Define tools and model

from langchain_core.tools import tool
from langchain.chat_models import init_chat_model

llm = init_chat_model(
    "anthropic:claude-3-7-sonnet-latest",
    temperature=0
)


# Define tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def divide(a: int, b: int) -> float:
    """Divide a and b.

    Args:
        a: first int
        b: second int
    """
    return a / b


# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)

# Step 1: Define state

from langchain_core.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator

class MessagesState(TypedDict):
    messages: Annotated[list[AnyMessage], operator.add]
    llm_calls: int

# Step 2: Define model node
from langchain_core.messages import SystemMessage
def llm_call(state: dict):
    """LLM decides whether to call a tool or not"""

    return {
        "messages": [
            llm_with_tools.invoke(
                [
                    SystemMessage(
                        content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
                    )
                ]
                + state["messages"]
            )
        ],
        "llm_calls": state.get('llm_calls', 0) + 1
    }


# Step 3: Define tool node


from langchain_core.messages import ToolMessage

def tool_node(state: dict):
    """Performs the tool call"""

    result = []
    for tool_call in state["messages"][-1].tool_calls:
        tool = tools_by_name[tool_call["name"]]
        observation = tool.invoke(tool_call["args"])
        result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
    return {"messages": result}

# Step 4: Define logic to determine whether to end

from typing import Literal

# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["environment", END]:
    """Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""

    messages = state["messages"]
    last_message = messages[-1]
    # If the LLM makes a tool call, then perform an action
    if last_message.tool_calls:
        return "Action"
    # Otherwise, we stop (reply to the user)
    return END

# Step 5: Build agent

from langgraph.graph import StateGraph, START, END

# Build workflow
agent_builder = StateGraph(MessagesState)

# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("environment", tool_node)

# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
    "llm_call",
    should_continue,
    {
        # Name returned by should_continue : Name of next node to visit
        "Action": "environment",
        END: END,
    },
)
agent_builder.add_edge("environment", "llm_call")

# Compile the agent
agent = agent_builder.compile()


from IPython.display import Image, display
# Show the agent
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))

# Invoke
from langchain_core.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
    m.pretty_print()

Using Functional API
# Step 0: Define tools and model

from langchain_core.tools import tool
from langchain.chat_models import init_chat_model

llm = init_chat_model(
    "anthropic:claude-3-7-sonnet-latest",
    temperature=0
)


# Define tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def divide(a: int, b: int) -> float:
    """Divide a and b.

    Args:
        a: first int
        b: second int
    """
    return a / b


# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)

from langgraph.graph import add_messages
from langchain_core.messages import (
    SystemMessage,
    HumanMessage,
    BaseMessage,
    ToolCall,
)


# Step 1: define model node
@task
def call_llm(messages: list[BaseMessage]):
    """LLM decides whether to call a tool or not"""
    return llm_with_tools.invoke(
        [
            SystemMessage(
                content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
            )
        ]
        + messages
    )


# Step 2: define tool node
@task
def call_tool(tool_call: ToolCall):
    """Performs the tool call"""
    tool = tools_by_name[tool_call["name"]]
    return tool.invoke(tool_call)


# Step 3: define agent
@entrypoint()
def agent(messages: list[BaseMessage]):
    llm_response = call_llm(messages).result()

    while True:
        if not llm_response.tool_calls:
            break

        # Execute tools
        tool_result_futures = [
            call_tool(tool_call) for tool_call in llm_response.tool_calls
        ]
        tool_results = [fut.result() for fut in tool_result_futures]
        messages = add_messages(messages, [llm_response, *tool_results])
        llm_response = call_llm(messages).result()

    messages = add_messages(messages, llm_response)
    return messages

# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
    print(chunk)
    print("\n")