Skip to main content
LangChain v1.0Welcome to the new LangChain documentation! If you encounter any issues or have feedback, please open an issue so we can improve. Archived v0 documentation can be found here.See the release notes and migration guide for a complete list of changes and instructions on how to upgrade your code.
Middleware provides a way to more tightly control what happens inside the agent. The core agent loop involves calling a model, letting it choose tools to execute, and then finishing when it calls no more tools:
Core agent loop diagram
Middleware exposes hooks before and after each of those steps:
Middleware flow diagram

What can middleware do?

Monitor

Track agent behavior with logging, analytics, and debugging

Modify

Transform prompts, tool selection, and output formatting

Control

Add retries, fallbacks, and early termination logic

Enforce

Apply rate limits, guardrails, and PII detection
Add middleware by passing it to create_agent:
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware, HumanInTheLoopMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[SummarizationMiddleware(), HumanInTheLoopMiddleware()],
)

Built-in middleware

LangChain provides prebuilt middleware for common use cases:

Summarization

Automatically summarize conversation history when approaching token limits.
Perfect for:
  • Long-running conversations that exceed context windows
  • Multi-turn dialogues with extensive history
  • Applications where preserving full conversation context matters
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[weather_tool, calculator_tool],
    middleware=[
        SummarizationMiddleware(
            model="openai:gpt-4o-mini",
            max_tokens_before_summary=4000,  # Trigger summarization at 4000 tokens
            messages_to_keep=20,  # Keep last 20 messages after summary
            summary_prompt="Custom prompt for summarization...",  # Optional
        ),
    ],
)
model
string
required
Model for generating summaries
max_tokens_before_summary
number
Token threshold for triggering summarization
messages_to_keep
number
default:"20"
Recent messages to preserve
token_counter
function
Custom token counting function. Defaults to character-based counting.
summary_prompt
string
Custom prompt template. Uses built-in template if not specified.
summary_prefix
string
default:"## Previous conversation summary:"
Prefix for summary messages

Human-in-the-loop

Pause agent execution for human approval, editing, or rejection of tool calls before they execute.
Perfect for:
  • High-stakes operations requiring human approval (database writes, financial transactions)
  • Compliance workflows where human oversight is mandatory
  • Long running conversations where human feedback is used to guide the agent
from langchain.agents import create_agent
from langchain.agents.middleware import HumanInTheLoopMiddleware
from langgraph.checkpoint.memory import InMemorySaver

agent = create_agent(
    model="openai:gpt-4o",
    tools=[read_email_tool, send_email_tool],
    checkpointer=InMemorySaver(),
    middleware=[
        HumanInTheLoopMiddleware(
            interrupt_on={
                # Require approval, editing, or rejection for sending emails
                "send_email_tool": {
                    "allowed_decisions": ["approve", "edit", "reject"],
                },
                # Auto-approve reading emails
                "read_email_tool": False,
            }
        ),
    ],
)
interrupt_on
dict
required
Mapping of tool names to approval configs. Values can be True (interrupt with default config), False (auto-approve), or an InterruptOnConfig object.
description_prefix
string
default:"Tool execution requires approval"
Prefix for action request descriptions
InterruptOnConfig options:
allowed_decisions
list[string]
List of allowed decisions: "approve", "edit", or "reject"
description
string | callable
Static string or callable function for custom description
Important: Human-in-the-loop middleware requires a checkpointer to maintain state across interruptions.See the human-in-the-loop documentation for complete examples and integration patterns.

Anthropic prompt caching

Reduce costs by caching repetitive prompt prefixes with Anthropic models.
Perfect for:
  • Applications with long, repeated system prompts
  • Agents that reuse the same context across invocations
  • Reducing API costs for high-volume deployments
Learn more about Anthropic Prompt Caching strategies and limitations.
from langchain_anthropic import ChatAnthropic
from langchain.agents.middleware.prompt_caching import AnthropicPromptCachingMiddleware
from langchain.agents import create_agent

LONG_PROMPT = """
Please be a helpful assistant.

<Lots more context ...>
"""

agent = create_agent(
    model=ChatAnthropic(model="claude-sonnet-4-latest"),
    system_prompt=LONG_PROMPT,
    middleware=[AnthropicPromptCachingMiddleware(ttl="5m")],
)

# cache store
agent.invoke({"messages": [HumanMessage("Hi, my name is Bob")]})

# cache hit, system prompt is cached
agent.invoke({"messages": [HumanMessage("What's my name?")]})
type
string
default:"ephemeral"
Cache type. Only "ephemeral" is currently supported.
ttl
string
default:"5m"
Time to live for cached content. Valid values: "5m" or "1h"
min_messages_to_cache
number
default:"0"
Minimum number of messages before caching starts
unsupported_model_behavior
string
default:"warn"
Behavior when using non-Anthropic models. Options: "ignore", "warn", or "raise"

Model call limit

Limit the number of model calls to prevent infinite loops or excessive costs.
Perfect for:
  • Preventing runaway agents from making too many API calls
  • Enforcing cost controls on production deployments
  • Testing agent behavior within specific call budgets
from langchain.agents import create_agent
from langchain.agents.middleware import ModelCallLimitMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[
        ModelCallLimitMiddleware(
            thread_limit=10,  # Max 10 calls per thread (across runs)
            run_limit=5,  # Max 5 calls per run (single invocation)
            exit_behavior="end",  # Or "error" to raise exception
        ),
    ],
)
thread_limit
number
Maximum model calls across all runs in a thread. Defaults to no limit.
run_limit
number
Maximum model calls per single invocation. Defaults to no limit.
exit_behavior
string
default:"end"
Behavior when limit is reached. Options: "end" (graceful termination) or "error" (raise exception)

Tool call limit

Limit the number of tool calls to specific tools or all tools.
Perfect for:
  • Preventing excessive calls to expensive external APIs
  • Limiting web searches or database queries
  • Enforcing rate limits on specific tool usage
from langchain.agents import create_agent
from langchain.agents.middleware import ToolCallLimitMiddleware

# Limit all tool calls
global_limiter = ToolCallLimitMiddleware(thread_limit=20, run_limit=10)

# Limit specific tool
search_limiter = ToolCallLimitMiddleware(
    tool_name="search",
    thread_limit=5,
    run_limit=3,
)

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[global_limiter, search_limiter],
)
tool_name
string
Specific tool to limit. If not provided, limits apply to all tools.
thread_limit
number
Maximum tool calls across all runs in a thread. Defaults to no limit.
run_limit
number
Maximum tool calls per single invocation. Defaults to no limit.
exit_behavior
string
default:"end"
Behavior when limit is reached. Options: "end" (graceful termination) or "error" (raise exception)

Model fallback

Automatically fallback to alternative models when the primary model fails.
Perfect for:
  • Building resilient agents that handle model outages
  • Cost optimization by falling back to cheaper models
  • Provider redundancy across OpenAI, Anthropic, etc.
from langchain.agents import create_agent
from langchain.agents.middleware import ModelFallbackMiddleware

agent = create_agent(
    model="openai:gpt-4o",  # Primary model
    tools=[...],
    middleware=[
        ModelFallbackMiddleware(
            "openai:gpt-4o-mini",  # Try first on error
            "anthropic:claude-3-5-sonnet-20241022",  # Then this
        ),
    ],
)
first_model
string | BaseChatModel
required
First fallback model to try when the primary model fails. Can be a model string (e.g., "openai:gpt-4o-mini") or a BaseChatModel instance.
*additional_models
string | BaseChatModel
Additional fallback models to try in order if previous models fail

PII detection

Detect and handle Personally Identifiable Information in conversations.
Perfect for:
  • Healthcare and financial applications with compliance requirements
  • Customer service agents that need to sanitize logs
  • Any application handling sensitive user data
from langchain.agents import create_agent
from langchain.agents.middleware import PIIMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[
        # Redact emails in user input
        PIIMiddleware("email", strategy="redact", apply_to_input=True),
        # Mask credit cards (show last 4 digits)
        PIIMiddleware("credit_card", strategy="mask", apply_to_input=True),
        # Custom PII type with regex
        PIIMiddleware(
            "api_key",
            detector=r"sk-[a-zA-Z0-9]{32}",
            strategy="block",  # Raise error if detected
        ),
    ],
)
pii_type
string
required
Type of PII to detect. Can be a built-in type (email, credit_card, ip, mac_address, url) or a custom type name.
strategy
string
default:"redact"
How to handle detected PII. Options:
  • "block" - Raise exception when detected
  • "redact" - Replace with [REDACTED_TYPE]
  • "mask" - Partially mask (e.g., ****-****-****-1234)
  • "hash" - Replace with deterministic hash
detector
function | regex
Custom detector function or regex pattern. If not provided, uses built-in detector for the PII type.
apply_to_input
boolean
default:"True"
Check user messages before model call
apply_to_output
boolean
default:"False"
Check AI messages after model call
apply_to_tool_results
boolean
default:"False"
Check tool result messages after execution

Planning

Add todo list management capabilities for complex multi-step tasks.
This middleware automatically provides agents with a write_todos tool and system prompts to guide effective task planning.
from langchain.agents import create_agent
from langchain.agents.middleware import TodoListMiddleware
from langchain.messages import HumanMessage

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[TodoListMiddleware()],
)

result = agent.invoke({"messages": [HumanMessage("Help me refactor my codebase")]})
print(result["todos"])  # Array of todo items with status tracking
system_prompt
string
Custom system prompt for guiding todo usage. Uses built-in prompt if not specified.
tool_description
string
Custom description for the write_todos tool. Uses built-in description if not specified.

LLM tool selector

Use an LLM to intelligently select relevant tools before calling the main model.
Perfect for:
  • Agents with many tools (10+) where most aren’t relevant per query
  • Reducing token usage by filtering irrelevant tools
  • Improving model focus and accuracy
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolSelectorMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[tool1, tool2, tool3, tool4, tool5, ...],  # Many tools
    middleware=[
        LLMToolSelectorMiddleware(
            model="openai:gpt-4o-mini",  # Use cheaper model for selection
            max_tools=3,  # Limit to 3 most relevant tools
            always_include=["search"],  # Always include certain tools
        ),
    ],
)
model
string | BaseChatModel
Model for tool selection. Can be a model string or BaseChatModel instance. Defaults to the agent’s main model.
system_prompt
string
Instructions for the selection model. Uses built-in prompt if not specified.
max_tools
number
Maximum number of tools to select. Defaults to no limit.
always_include
list[string]
List of tool names to always include in the selection

Tool retry

Automatically retry failed tool calls with configurable exponential backoff.
Perfect for:
  • Handling transient failures in external API calls
  • Improving reliability of network-dependent tools
  • Building resilient agents that gracefully handle temporary errors
from langchain.agents import create_agent
from langchain.agents.middleware import ToolRetryMiddleware

agent = create_agent(
    model="openai:gpt-4o",
    tools=[search_tool, database_tool],
    middleware=[
        ToolRetryMiddleware(
            max_retries=3,  # Retry up to 3 times
            backoff_factor=2.0,  # Exponential backoff multiplier
            initial_delay=1.0,  # Start with 1 second delay
            max_delay=60.0,  # Cap delays at 60 seconds
            jitter=True,  # Add random jitter to avoid thundering herd
        ),
    ],
)
max_retries
number
default:"2"
Maximum number of retry attempts after the initial call (3 total attempts with default)
tools
list[BaseTool | str]
Optional list of tools or tool names to apply retry logic to. If None, applies to all tools.
retry_on
tuple[type[Exception], ...] | callable
default:"(Exception,)"
Either a tuple of exception types to retry on, or a callable that takes an exception and returns True if it should be retried.
on_failure
string | callable
default:"return_message"
Behavior when all retries are exhausted. Options:
  • "return_message" - Return a ToolMessage with error details (allows LLM to handle failure)
  • "raise" - Re-raise the exception (stops agent execution)
  • Custom callable - Function that takes the exception and returns a string for the ToolMessage content
backoff_factor
number
default:"2.0"
Multiplier for exponential backoff. Each retry waits initial_delay * (backoff_factor ** retry_number) seconds. Set to 0.0 for constant delay.
initial_delay
number
default:"1.0"
Initial delay in seconds before first retry
max_delay
number
default:"60.0"
Maximum delay in seconds between retries (caps exponential backoff growth)
jitter
boolean
default:"true"
Whether to add random jitter (±25%) to delay to avoid thundering herd

LLM tool emulator

Emulate tool execution using an LLM for testing purposes, replacing actual tool calls with AI-generated responses.
Perfect for:
  • Testing agent behavior without executing real tools
  • Developing agents when external tools are unavailable or expensive
  • Prototyping agent workflows before implementing actual tools
from langchain.agents import create_agent
from langchain.agents.middleware import LLMToolEmulator

agent = create_agent(
    model="openai:gpt-4o",
    tools=[get_weather, search_database, send_email],
    middleware=[
        # Emulate all tools by default
        LLMToolEmulator(),

        # Or emulate specific tools
        # LLMToolEmulator(tools=["get_weather", "search_database"]),

        # Or use a custom model for emulation
        # LLMToolEmulator(model="anthropic:claude-3-5-sonnet-latest"),
    ],
)
tools
list[str | BaseTool]
List of tool names (str) or BaseTool instances to emulate. If None (default), ALL tools will be emulated. If empty list, no tools will be emulated.
model
string | BaseChatModel
default:"anthropic:claude-3-5-sonnet-latest"
Model to use for generating emulated tool responses. Can be a model identifier string or BaseChatModel instance.

Context editing

Manage conversation context by trimming, summarizing, or clearing tool uses.
Perfect for:
  • Long conversations that need periodic context cleanup
  • Removing failed tool attempts from context
  • Custom context management strategies
from langchain.agents import create_agent
from langchain.agents.middleware import ContextEditingMiddleware, ClearToolUsesEdit

agent = create_agent(
    model="openai:gpt-4o",
    tools=[...],
    middleware=[
        ContextEditingMiddleware(
            edits=[
                ClearToolUsesEdit(max_tokens=1000),  # Clear old tool uses
            ],
        ),
    ],
)
edits
list[ContextEdit]
default:"[ClearToolUsesEdit()]"
List of ContextEdit strategies to apply
token_count_method
string
default:"approximate"
Token counting method. Options: "approximate" or "model"
ClearToolUsesEdit options:
trigger
number
default:"100000"
Token count that triggers the edit
clear_at_least
number
default:"0"
Minimum tokens to reclaim
keep
number
default:"3"
Number of recent tool results to preserve
clear_tool_inputs
boolean
default:"False"
Whether to clear tool call parameters
exclude_tools
list[string]
default:"()"
List of tool names to exclude from clearing
placeholder
string
default:"[cleared]"
Placeholder text for cleared outputs

Custom middleware

Build custom middleware by implementing hooks that run at specific points in the agent execution flow. You can create middleware in two ways:
  1. Decorator-based - Quick and simple for single-hook middleware
  2. Class-based - More powerful for complex middleware with multiple hooks

Decorator-based middleware

For simple middleware that only needs a single hook, decorators provide the quickest way to add functionality:
from langchain.agents.middleware import before_model, after_model, wrap_model_call
from langchain.agents.middleware import AgentState, ModelRequest, ModelResponse, dynamic_prompt
from langchain.messages import AIMessage
from langchain.agents import create_agent
from langgraph.runtime import Runtime
from typing import Any, Callable

# Node-style: logging before model calls
@before_model
def log_before_model(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    print(f"About to call model with {len(state['messages'])} messages")
    return None

# Node-style: validation after model calls
@after_model(can_jump_to=["end"])
def validate_output(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
    last_message = state["messages"][-1]
    if "BLOCKED" in last_message.content:
        return {
            "messages": [AIMessage("I cannot respond to that request.")],
            "jump_to": "end"
        }
    return None

# Wrap-style: retry logic
@wrap_model_call
def retry_model(
    request: ModelRequest,
    handler: Callable[[ModelRequest], ModelResponse],
) -> ModelResponse:
    for attempt in range(3):
        try:
            return handler(request)
        except Exception as e:
            if attempt == 2:
                raise
            print(f"Retry {attempt + 1}/3 after error: {e}")

# Wrap-style: dynamic prompts
@dynamic_prompt
def personalized_prompt(request: ModelRequest) -> str:
    user_id = request.runtime.context.get("user_id", "guest")
    return f"You are a helpful assistant for user {user_id}. Be concise and friendly."

# Use decorators in agent
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[log_before_model, validate_output, retry_model, personalized_prompt],
    tools=[...],
)

Available decorators

Node-style (run at specific execution points):
  • @before_agent - Before agent starts (once per invocation)
  • @before_model - Before each model call
  • @after_model - After each model response
  • @after_agent - After agent completes (once per invocation)
Wrap-style (intercept and control execution): Convenience decorators:

When to use decorators

Use decorators when

  • You need a single hook
  • No complex configuration

Use classes when

  • Multiple hooks needed
  • Complex configuration
  • Reusable across projects (config on init)

Class-based middleware

Two hook styles

Node-style hooks

Run sequentially at specific execution points. Use for logging, validation, and state updates.

Wrap-style hooks

Intercept execution with full control over handler calls. Use for retries, caching, and transformation.

Node-style hooks

Run at specific points in the execution flow:
  • before_agent - Before agent starts (once per invocation)
  • before_model - Before each model call
  • after_model - After each model response
  • after_agent - After agent completes (up to once per invocation)
Example: Logging middleware
from langchain.agents.middleware import AgentMiddleware, AgentState
from langgraph.runtime import Runtime
from typing import Any

class LoggingMiddleware(AgentMiddleware):
    def before_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        print(f"About to call model with {len(state['messages'])} messages")
        return None

    def after_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        print(f"Model returned: {state['messages'][-1].content}")
        return None
Example: Conversation length limit
from langchain.agents.middleware import AgentMiddleware, AgentState
from langchain.messages import AIMessage
from langgraph.runtime import Runtime
from typing import Any

class MessageLimitMiddleware(AgentMiddleware):
    def __init__(self, max_messages: int = 50):
        super().__init__()
        self.max_messages = max_messages

    def before_model(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
        if len(state["messages"]) == self.max_messages:
            return {
                "messages": [AIMessage("Conversation limit reached.")],
                "jump_to": "end"
            }
        return None

Wrap-style hooks

Intercept execution and control when the handler is called:
  • wrap_model_call - Around each model call
  • wrap_tool_call - Around each tool call
You decide if the handler is called zero times (short-circuit), once (normal flow), or multiple times (retry logic). Example: Model retry middleware
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from typing import Callable

class RetryMiddleware(AgentMiddleware):
    def __init__(self, max_retries: int = 3):
        super().__init__()
        self.max_retries = max_retries

    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        for attempt in range(self.max_retries):
            try:
                return handler(request)
            except Exception as e:
                if attempt == self.max_retries - 1:
                    raise
                print(f"Retry {attempt + 1}/{self.max_retries} after error: {e}")
Example: Dynamic model selection
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from langchain.chat_models import init_chat_model
from typing import Callable

class DynamicModelMiddleware(AgentMiddleware):
    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        # Use different model based on conversation length
        if len(request.messages) > 10:
            request.model = init_chat_model("openai:gpt-4o")
        else:
            request.model = init_chat_model("openai:gpt-4o-mini")

        return handler(request)
Example: Tool call monitoring
from langchain.tools.tool_node import ToolCallRequest
from langchain.agents.middleware import AgentMiddleware
from langchain_core.messages import ToolMessage
from langgraph.types import Command
from typing import Callable

class ToolMonitoringMiddleware(AgentMiddleware):
    def wrap_tool_call(
        self,
        request: ToolCallRequest,
        handler: Callable[[ToolCallRequest], ToolMessage | Command],
    ) -> ToolMessage | Command:
        print(f"Executing tool: {request.tool_call['name']}")
        print(f"Arguments: {request.tool_call['args']}")

        try:
            result = handler(request)
            print(f"Tool completed successfully")
            return result
        except Exception as e:
            print(f"Tool failed: {e}")
            raise

Custom state schema

Middleware can extend the agent’s state with custom properties. Define a custom state type and set it as the state_schema:
from langchain.agents.middleware import AgentState, AgentMiddleware
from typing_extensions import NotRequired
from typing import Any

class CustomState(AgentState):
    model_call_count: NotRequired[int]
    user_id: NotRequired[str]

class CallCounterMiddleware(AgentMiddleware[CustomState]):
    state_schema = CustomState

    def before_model(self, state: CustomState, runtime) -> dict[str, Any] | None:
        # Access custom state properties
        count = state.get("model_call_count", 0)

        if count > 10:
            return {"jump_to": "end"}

        return None

    def after_model(self, state: CustomState, runtime) -> dict[str, Any] | None:
        # Update custom state
        return {"model_call_count": state.get("model_call_count", 0) + 1}
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[CallCounterMiddleware()],
    tools=[...],
)

# Invoke with custom state
result = agent.invoke({
    "messages": [HumanMessage("Hello")],
    "model_call_count": 0,
    "user_id": "user-123",
})

Execution order

When using multiple middleware, understanding execution order is important:
agent = create_agent(
    model="openai:gpt-4o",
    middleware=[middleware1, middleware2, middleware3],
    tools=[...],
)
Before hooks run in order:
  1. middleware1.before_agent()
  2. middleware2.before_agent()
  3. middleware3.before_agent()
Agent loop starts
  1. middleware1.before_model()
  2. middleware2.before_model()
  3. middleware3.before_model()
Wrap hooks nest like function calls:
  1. middleware1.wrap_model_call()middleware2.wrap_model_call()middleware3.wrap_model_call() → model
After hooks run in reverse order:
  1. middleware3.after_model()
  2. middleware2.after_model()
  3. middleware1.after_model()
Agent loop ends
  1. middleware3.after_agent()
  2. middleware2.after_agent()
  3. middleware1.after_agent()
Key rules:
  • before_* hooks: First to last
  • after_* hooks: Last to first (reverse)
  • wrap_* hooks: Nested (first middleware wraps all others)

Agent jumps

To exit early from middleware, return a dictionary with jump_to:
class EarlyExitMiddleware(AgentMiddleware):
    def before_model(self, state: AgentState, runtime) -> dict[str, Any] | None:
        # Check some condition
        if should_exit(state):
            return {
                "messages": [AIMessage("Exiting early due to condition.")],
                "jump_to": "end"
            }
        return None
Available jump targets:
  • "end": Jump to the end of the agent execution
  • "tools": Jump to the tools node
  • "model": Jump to the model node (or the first before_model hook)
Important: When jumping from before_model or after_model, jumping to "model" will cause all before_model middleware to run again. To enable jumping, decorate your hook with @hook_config(can_jump_to=[...]):
from langchain.agents.middleware import AgentMiddleware, hook_config
from typing import Any

class ConditionalMiddleware(AgentMiddleware):
    @hook_config(can_jump_to=["end", "tools"])
    def after_model(self, state: AgentState, runtime) -> dict[str, Any] | None:
        if some_condition(state):
            return {"jump_to": "end"}
        return None

Best practices

  1. Keep middleware focused - each should do one thing well
  2. Handle errors gracefully - don’t let middleware errors crash the agent
  3. Use appropriate hook types:
    • Node-style for sequential logic (logging, validation)
    • Wrap-style for control flow (retry, fallback, caching)
  4. Clearly document any custom state properties
  5. Unit test middleware independently before integrating
  6. Consider execution order - place critical middleware first in the list
  7. Use built-in middleware when possible, don’t reinvent the wheel :)

Examples

Dynamically selecting tools

Select relevant tools at runtime to improve performance and accuracy.
Benefits:
  • Shorter prompts - Reduce complexity by exposing only relevant tools
  • Better accuracy - Models choose correctly from fewer options
  • Permission control - Dynamically filter tools based on user access
from langchain.agents import create_agent
from langchain.agents.middleware import AgentMiddleware, ModelRequest
from typing import Callable

class ToolSelectorMiddleware(AgentMiddleware):
    def wrap_model_call(
        self,
        request: ModelRequest,
        handler: Callable[[ModelRequest], ModelResponse],
    ) -> ModelResponse:
        """Middleware to select relevant tools based on state/context."""
        # Select a small, relevant subset of tools based on state/context
        relevant_tools = select_relevant_tools(request.state, request.runtime)
        request.tools = relevant_tools
        return handler(request)

agent = create_agent(
    model="openai:gpt-4o",
    tools=all_tools,  # All available tools need to be registered upfront
    # Middleware can be used to select a smaller subset that's relevant for the given run.
    middleware=[ToolSelectorMiddleware()],
)

Additional resources


I