Skip to main content
In this tutorial we will build a custom agent that can answer questions about a SQL database using LangGraph. LangChain offers built-in agent implementations, implemented using LangGraph primitives. If deeper customization is required, agents can be implemented directly in LangGraph. This guide demonstrates an example implementation of a SQL agent. You can find a tutorial building a SQL agent using higher-level LangChain abstractions here.
Building Q&A systems of SQL databases requires executing model-generated SQL queries. There are inherent risks in doing this. Make sure that your database connection permissions are always scoped as narrowly as possible for your agent’s needs. This will mitigate, though not eliminate, the risks of building a model-driven system.
The prebuilt agent lets us get started quickly, but we relied on the system prompt to constrain its behavior— for example, we instructed the agent to always start with the “list tables” tool, and to always run a query-checker tool before executing the query. We can enforce a higher degree of control in LangGraph by customizing the agent. Here, we implement a simple ReAct-agent setup, with dedicated nodes for specific tool-calls. We will use the same [state] as the pre-built agent.

Concepts

We will cover the following concepts:

Setup

Installation

pip install langchain  langgraph  langchain-community

LangSmith

Set up LangSmith to inspect what is happening inside your chain or agent. Then set the following environment variables:
export LANGSMITH_TRACING="true"
export LANGSMITH_API_KEY="..."

1. Select an LLM

Select a model that supports tool-calling:
  • OpenAI
  • Anthropic
  • Azure
  • Google Gemini
  • AWS Bedrock
👉 Read the OpenAI integration docs
pip install -U "langchain[openai]"
import os
from langchain.chat_models import init_chat_model

os.environ["OPENAI_API_KEY"] = "sk-..."

llm = init_chat_model("openai:gpt-4.1")
The output shown in the examples below used OpenAI.

2. Configure the database

You will be creating a SQLite database for this tutorial. SQLite is a lightweight database that is easy to set up and use. We will be loading the chinook database, which is a sample database that represents a digital media store. For convenience, we have hosted the database (Chinook.db) on a public GCS bucket.
import requests, pathlib

url = "https://storage.googleapis.com/benchmarks-artifacts/chinook/Chinook.db"
local_path = pathlib.Path("Chinook.db")

if local_path.exists():
    print(f"{local_path} already exists, skipping download.")
else:
    response = requests.get(url)
    if response.status_code == 200:
        local_path.write_bytes(response.content)
        print(f"File downloaded and saved as {local_path}")
    else:
        print(f"Failed to download the file. Status code: {response.status_code}")
We will use a handy SQL database wrapper available in the langchain_community package to interact with the database. The wrapper provides a simple interface to execute SQL queries and fetch results:
from langchain_community.utilities import SQLDatabase

db = SQLDatabase.from_uri("sqlite:///Chinook.db")

print(f"Dialect: {db.dialect}")
print(f"Available tables: {db.get_usable_table_names()}")
print(f'Sample output: {db.run("SELECT * FROM Artist LIMIT 5;")}')
Dialect: sqlite
Available tables: ['Album', 'Artist', 'Customer', 'Employee', 'Genre', 'Invoice', 'InvoiceLine', 'MediaType', 'Playlist', 'PlaylistTrack', 'Track']
Sample output: [(1, 'AC/DC'), (2, 'Accept'), (3, 'Aerosmith'), (4, 'Alanis Morissette'), (5, 'Alice In Chains')]

3. Add tools for database interactions

Use the SQLDatabase wrapper available in the langchain_community package to interact with the database. The wrapper provides a simple interface to execute SQL queries and fetch results:
from langchain_community.agent_toolkits import SQLDatabaseToolkit

toolkit = SQLDatabaseToolkit(db=db, llm=llm)

tools = toolkit.get_tools()

for tool in tools:
    print(f"{tool.name}: {tool.description}\n")
sql_db_query: Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.

sql_db_schema: Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3

sql_db_list_tables: Input is an empty string, output is a comma-separated list of tables in the database.

sql_db_query_checker: Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!

4. Define application steps

We construct dedicated nodes for the following steps:
  • Listing DB tables
  • Calling the “get schema” tool
  • Generating a query
  • Checking the query
Putting these steps in dedicated nodes lets us (1) force tool-calls when needed, and (2) customize the prompts associated with each step.
from typing import Literal

from langchain.agents import ToolNode
from langchain_core.messages import AIMessage
from langchain_core.runnables import RunnableConfig
from langgraph.graph import END, START, MessagesState, StateGraph


get_schema_tool = next(tool for tool in tools if tool.name == "sql_db_schema")
get_schema_node = ToolNode([get_schema_tool], name="get_schema")

run_query_tool = next(tool for tool in tools if tool.name == "sql_db_query")
run_query_node = ToolNode([run_query_tool], name="run_query")


# Example: create a predetermined tool call
def list_tables(state: MessagesState):
    tool_call = {
        "name": "sql_db_list_tables",
        "args": {},
        "id": "abc123",
        "type": "tool_call",
    }
    tool_call_message = AIMessage(content="", tool_calls=[tool_call])

    list_tables_tool = next(tool for tool in tools if tool.name == "sql_db_list_tables")
    tool_message = list_tables_tool.invoke(tool_call)
    response = AIMessage(f"Available tables: {tool_message.content}")

    return {"messages": [tool_call_message, tool_message, response]}


# Example: force a model to create a tool call
def call_get_schema(state: MessagesState):
    # Note that LangChain enforces that all models accept `tool_choice="any"`
    # as well as `tool_choice=<string name of tool>`.
    llm_with_tools = llm.bind_tools([get_schema_tool], tool_choice="any")
    response = llm_with_tools.invoke(state["messages"])

    return {"messages": [response]}


generate_query_system_prompt = """
You are an agent designed to interact with a SQL database.
Given an input question, create a syntactically correct {dialect} query to run,
then look at the results of the query and return the answer. Unless the user
specifies a specific number of examples they wish to obtain, always limit your
query to at most {top_k} results.

You can order the results by a relevant column to return the most interesting
examples in the database. Never query for all the columns from a specific table,
only ask for the relevant columns given the question.

DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.
""".format(
    dialect=db.dialect,
    top_k=5,
)


def generate_query(state: MessagesState):
    system_message = {
        "role": "system",
        "content": generate_query_system_prompt,
    }
    # We do not force a tool call here, to allow the model to
    # respond naturally when it obtains the solution.
    llm_with_tools = llm.bind_tools([run_query_tool])
    response = llm_with_tools.invoke([system_message] + state["messages"])

    return {"messages": [response]}


check_query_system_prompt = """
You are a SQL expert with a strong attention to detail.
Double check the {dialect} query for common mistakes, including:
- Using NOT IN with NULL values
- Using UNION when UNION ALL should have been used
- Using BETWEEN for exclusive ranges
- Data type mismatch in predicates
- Properly quoting identifiers
- Using the correct number of arguments for functions
- Casting to the correct data type
- Using the proper columns for joins

If there are any of the above mistakes, rewrite the query. If there are no mistakes,
just reproduce the original query.

You will call the appropriate tool to execute the query after running this check.
""".format(dialect=db.dialect)


def check_query(state: MessagesState):
    system_message = {
        "role": "system",
        "content": check_query_system_prompt,
    }

    # Generate an artificial user message to check
    tool_call = state["messages"][-1].tool_calls[0]
    user_message = {"role": "user", "content": tool_call["args"]["query"]}
    llm_with_tools = llm.bind_tools([run_query_tool], tool_choice="any")
    response = llm_with_tools.invoke([system_message, user_message])
    response.id = state["messages"][-1].id

    return {"messages": [response]}

5. Implement the agent

We can now assemble these steps into a workflow using the Graph API. We define a conditional edge at the query generation step that will route to the query checker if a query is generated, or end if there are no tool calls present, such that the LLM has delivered a response to the query.
def should_continue(state: MessagesState) -> Literal[END, "check_query"]:
    messages = state["messages"]
    last_message = messages[-1]
    if not last_message.tool_calls:
        return END
    else:
        return "check_query"


builder = StateGraph(MessagesState)
builder.add_node(list_tables)
builder.add_node(call_get_schema)
builder.add_node(get_schema_node, "get_schema")
builder.add_node(generate_query)
builder.add_node(check_query)
builder.add_node(run_query_node, "run_query")

builder.add_edge(START, "list_tables")
builder.add_edge("list_tables", "call_get_schema")
builder.add_edge("call_get_schema", "get_schema")
builder.add_edge("get_schema", "generate_query")
builder.add_conditional_edges(
    "generate_query",
    should_continue,
)
builder.add_edge("check_query", "run_query")
builder.add_edge("run_query", "generate_query")

agent = builder.compile()
We visualize the application below:
from IPython.display import Image, display
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod, NodeStyles

display(Image(agent.get_graph().draw_mermaid_png()))
SQL agent graph We can now invoke the graph:
question = "Which genre on average has the longest tracks?"

for step in agent.stream(
    {"messages": [{"role": "user", "content": question}]},
    stream_mode="values",
):
    step["messages"][-1].pretty_print()
================================ Human Message =================================

Which genre on average has the longest tracks?
================================== Ai Message ==================================

Available tables: Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
================================== Ai Message ==================================
Tool Calls:
  sql_db_schema (call_yzje0tj7JK3TEzDx4QnRR3lL)
 Call ID: call_yzje0tj7JK3TEzDx4QnRR3lL
  Args:
    table_names: Genre, Track
================================= Tool Message =================================
Name: sql_db_schema


CREATE TABLE "Genre" (
	"GenreId" INTEGER NOT NULL,
	"Name" NVARCHAR(120),
	PRIMARY KEY ("GenreId")
)

/*
3 rows from Genre table:
GenreId	Name
1	Rock
2	Jazz
3	Metal
*/


CREATE TABLE "Track" (
	"TrackId" INTEGER NOT NULL,
	"Name" NVARCHAR(200) NOT NULL,
	"AlbumId" INTEGER,
	"MediaTypeId" INTEGER NOT NULL,
	"GenreId" INTEGER,
	"Composer" NVARCHAR(220),
	"Milliseconds" INTEGER NOT NULL,
	"Bytes" INTEGER,
	"UnitPrice" NUMERIC(10, 2) NOT NULL,
	PRIMARY KEY ("TrackId"),
	FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"),
	FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"),
	FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")
)

/*
3 rows from Track table:
TrackId	Name	AlbumId	MediaTypeId	GenreId	Composer	Milliseconds	Bytes	UnitPrice
1	For Those About To Rock (We Salute You)	1	1	1	Angus Young, Malcolm Young, Brian Johnson	343719	11170334	0.99
2	Balls to the Wall	2	2	1	U. Dirkschneider, W. Hoffmann, H. Frank, P. Baltes, S. Kaufmann, G. Hoffmann	342562	5510424	0.99
3	Fast As a Shark	3	2	1	F. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman	230619	3990994	0.99
*/
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_cb9ApLfZLSq7CWg6jd0im90b)
 Call ID: call_cb9ApLfZLSq7CWg6jd0im90b
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgMilliseconds FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.GenreId ORDER BY AvgMilliseconds DESC LIMIT 5;
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_DMVALfnQ4kJsuF3Yl6jxbeAU)
 Call ID: call_DMVALfnQ4kJsuF3Yl6jxbeAU
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgMilliseconds FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.GenreId ORDER BY AvgMilliseconds DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query

[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================

The genre with the longest tracks on average is "Sci Fi & Fantasy," with an average track length of approximately 2,911,783 milliseconds. Other genres with relatively long tracks include "Science Fiction," "Drama," "TV Shows," and "Comedy."
See LangSmith trace for the above run.

6. Implement human-in-the-loop review

It can be prudent to check the agent’s SQL queries before they are executed for any unintended actions or inefficiencies. Here we leverage LangGraph’s human-in-the-loop features to pause the run before executing a SQL query and wait for human review. Using LangGraph’s persistence layer, we can pause the run indefinitely (or at least as long as the persistence layer is alive). Let’s wrap the sql_db_query tool in a node that receives human input. We can implement this using the interrupt function. Below, we allow for input to approve the tool call, edit its arguments, or provide user feedback.
from langchain_core.runnables import RunnableConfig
from langchain_core.tools import tool
from langgraph.types import interrupt

@tool(
    run_query_tool.name,
    description=run_query_tool.description,
    args_schema=run_query_tool.args_schema
)
def run_query_tool_with_interrupt(config: RunnableConfig, **tool_input):
    request = {
        "action": run_query_tool.name,
        "args": tool_input,
        "description": "Please review the tool call"
    }
    response = interrupt([request]) 
    # approve the tool call
    if response["type"] == "accept":
        tool_response = run_query_tool.invoke(tool_input, config)
    # update tool call args
    elif response["type"] == "edit":
        tool_input = response["args"]["args"]
        tool_response = run_query_tool.invoke(tool_input, config)
    # respond to the LLM with user feedback
    elif response["type"] == "response":
        user_feedback = response["args"]
        tool_response = user_feedback
    else:
        raise ValueError(f"Unsupported interrupt response type: {response['type']}")

    return tool_response
The above implementation follows the tool interrupt example in the broader human-in-the-loop guide. Refer to that guide for details and alternatives.
Let’s now re-assemble our graph. We will replace the programmatic check with human review. Note that we now include a checkpointer; this is required to pause and resume the run.
from langgraph.checkpoint.memory import InMemorySaver

def should_continue(state: MessagesState) -> Literal[END, "run_query"]:
    messages = state["messages"]
    last_message = messages[-1]
    if not last_message.tool_calls:
        return END
    else:
        return "run_query"

builder = StateGraph(MessagesState)
builder.add_node(list_tables)
builder.add_node(call_get_schema)
builder.add_node(get_schema_node, "get_schema")
builder.add_node(generate_query)
builder.add_node(run_query_node, "run_query")

builder.add_edge(START, "list_tables")
builder.add_edge("list_tables", "call_get_schema")
builder.add_edge("call_get_schema", "get_schema")
builder.add_edge("get_schema", "generate_query")
builder.add_conditional_edges(
    "generate_query",
    should_continue,
)
builder.add_edge("run_query", "generate_query")

checkpointer = InMemorySaver() 
agent = builder.compile(checkpointer=checkpointer) 
We can invoke the graph as before. This time, execution is interrupted:
import json

config = {"configurable": {"thread_id": "1"}}

question = "Which genre on average has the longest tracks?"

for step in agent.stream(
    {"messages": [{"role": "user", "content": question}]},
    config,
    stream_mode="values",
):
    if "messages" in step:
        step["messages"][-1].pretty_print()
    elif "__interrupt__" in step:
        action = step["__interrupt__"][0]
        print("INTERRUPTED:")
        for request in action.value:
            print(json.dumps(request, indent=2))
    else:
        pass
...

INTERRUPTED:
{
  "action": "sql_db_query",
  "args": {
    "query": "SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgLength FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AvgLength DESC LIMIT 5;"
  },
  "description": "Please review the tool call"
}
We can accept or edit the tool call using Command:
from langgraph.types import Command


for step in agent.stream(
    Command(resume={"type": "accept"}),
    # Command(resume={"type": "edit", "args": {"query": "..."}}),
    config,
    stream_mode="values",
):
    if "messages" in step:
        step["messages"][-1].pretty_print()
    elif "__interrupt__" in step:
        action = step["__interrupt__"][0]
        print("INTERRUPTED:")
        for request in action.value:
            print(json.dumps(request, indent=2))
    else:
        pass
================================== Ai Message ==================================
Tool Calls:
  sql_db_query (call_t4yXkD6shwdTPuelXEmY3sAY)
 Call ID: call_t4yXkD6shwdTPuelXEmY3sAY
  Args:
    query: SELECT Genre.Name, AVG(Track.Milliseconds) AS AvgLength FROM Track JOIN Genre ON Track.GenreId = Genre.GenreId GROUP BY Genre.Name ORDER BY AvgLength DESC LIMIT 5;
================================= Tool Message =================================
Name: sql_db_query

[('Sci Fi & Fantasy', 2911783.0384615385), ('Science Fiction', 2625549.076923077), ('Drama', 2575283.78125), ('TV Shows', 2145041.0215053763), ('Comedy', 1585263.705882353)]
================================== Ai Message ==================================

The genre with the longest average track length is "Sci Fi & Fantasy" with an average length of about 2,911,783 milliseconds. Other genres with long average track lengths include "Science Fiction," "Drama," "TV Shows," and "Comedy."
Refer to the human-in-the-loop guide for details.

Next steps

Check out the Evaluate a graph guide for evaluating LangGraph applications, including SQL agents like this one, using LangSmith.